首页 | 本学科首页   官方微博 | 高级检索  
     


Laminar flow past a sphere rotating in the transverse direction
Authors:Dongjoo Kim
Affiliation:(1) School of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk, 730-701, Korea
Abstract:Laminar flow past a sphere rotating in the transverse direction is numerically investigated in order to understand the effect of the rotation on the characteristics of flow over the sphere. Numerical simulations are performed at Re = 100, 250 and 300, where the Reynolds number is based on the free-stream velocity and the sphere diameter. The rotational speeds considered are in the range of 0 ≤ ω* ≤ 1.2, where ω* is the maximum velocity on the sphere surface normalized by the free-stream velocity. Without rotation, the flow past a sphere experiences steady axisymmetry, steady planar-symmetry, and unsteady planar-symmetry, respectively, at Re = 100, 250 and 300. With rotation, however, the flow becomes planar-symmetric for all the cases investigated, and the symmetry plane of flow is orthogonal to the rotational direction. Also, the rotation affects the flow unsteadiness, and its effect depends on the rotational speed and the Reynolds number. The flow is steady irrespective of the rotational speed at Re = 100, whereas at Re = 250 and 300 it undergoes a sequence of transitions between steady and unsteady flows with increasing ω*. As a result, the characteristics of vortex shedding and vortical structures in the wake are significantly modified by the rotation at Re = 250 and 300. For example, at Re = 300, vortex shedding occurs at low values of ω*, but it is completely suppressed at ω* = 0.04 and 0.6. Interestingly, at ω* = 1 and 1.2, unsteady vortices are newly generated in the wake due to the shear layer instability. The critical rotational speed, at which the shear layer instability begins to occur, is shown to be higher at Re = 250 than at Re = 300. This paper was recommended for publication in revised form by Associate Editor Dongshin Shin Dongjoo Kim is an associate professor in the School of Mechanical Engineering at Kumoh National Institute of Technology. His research interests include computational fluid dynamics, bluff-body wakes, and control of turbulent flows. He has a PhD in mechanical engineering from Seoul National University. He is a member of the American Physical Society and the American Institute of Aeronautics and Astronautics.
Keywords:Sphere  Wake  Transverse rotation  Vortex shedding  Shear layer instability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号