首页 | 本学科首页   官方微博 | 高级检索  
     


Fiber laser based two-photon FRET measurement of calmodulin and mCherry-E(0)GFP proteins
Authors:Adany Peter  Johnson Carey K  Hui Rongqing
Affiliation:Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas 66045, USA.
Abstract:The speed and accuracy of Förster resonance energy transfer (FRET) measurements can be improved by rapidly alternating excitation wavelengths between the donor and acceptor fluorophore. We demonstrate FRET efficiency measurements based on a fiber laser and photonic crystal fiber as the source for two‐photon excitation (TPE). This system offers the potential for rapid wavelength switching with the benefits of axial optical sectioning and improved penetration depth provided by TPE. Correction of FRET signals for cross excitation and cross emission was achieved by switching the excitation wavelength with an electrically controlled modulator. Measurement speed was primarily limited by integration times required to measure fluorescence. Using this system, we measured the FRET efficiency of calmodulin labeled with Alexa Fluor 488 and Texas Red dyes. In addition, we measured two‐photon induced FRET in an E0GFP‐mCherry protein construct. Results from one‐photon and two‐photon excitation are compared to validate the rapid wavelength switched two‐photon measurements. Microsc. Res. Tech. 75:837–843, 2012. © 2011 Wiley Periodicals, Inc.
Keywords:wavelength tuning  photonic crystal fiber  Alexa Fluor 488  Texas Red  green fluorescent protein
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号