首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的露天矿山边坡失稳预警方法
引用本文:谢振华,梁莎莎,张雪冬. 基于RBF神经网络的露天矿山边坡失稳预警方法[J]. 金属矿山, 2014, 32(9): 7-10
作者姓名:谢振华  梁莎莎  张雪冬
作者单位:1.中国劳动关系学院安全工程系,北京 100048;2.北京科技大学土木与环境工程学院,北京 100083
基金项目:“十二五”国家科技支撑计划重点项目
摘    要:边坡失稳研究是露天矿山安全生产的关键问题,边坡失稳智能化预警的实现是失稳研究的核心内容。以马钢南山铁矿凹山采场高陡边坡工程为例,建立了RBF神经网络预警模型,采用梯度下降训练算法并进行了改进,根据经验来设置算法的学习步长,选取黏聚力、内摩擦角,边坡角、边坡高度,孔隙水压力比、容重等6个因素作为网络的输入单元,利用所选的25组样本数据完成了RBF神经网络的学习。应用学习好的预警模型对南山铁矿凹山采场的2个帮进行了边坡失稳预警分析,得到2个帮的稳定性等级结果分别为1级和3级,即极稳定和基本稳定,与现场情况一致。该预警方法合理,具有推广应用价值。

关 键 词:RBF神经网络  边坡失稳  高陡边坡  预警模型

Early Warning Method of Slope Instability of Open-pit Mine Based on RBF Neural Network
Xie Zhenhua,Liang Shasha,Zhang Xuedong. Early Warning Method of Slope Instability of Open-pit Mine Based on RBF Neural Network[J]. Metal Mine, 2014, 32(9): 7-10
Authors:Xie Zhenhua  Liang Shasha  Zhang Xuedong
Affiliation:1.Department of Safety Engineering,China Institute of Industrial Relations,Beijing 100048,China;2.Civil and Environmental Engineering School,University of Science and Technology Beijing,Beijing 100083,China;
Abstract:The slope instability has always been a key technical issue for the safe production in open-pit mine.The realization of the intelligent warning of slope instability is the core of instability research.The early warning model based on RBF neural network was established,taking the high-steep slope engineering of Aoshan pit in Nanshan Iron Mine of Masteel as a case.Gradient descent algorithm for training was improved,and according to the experience,the algorithm's learning step was set up.Six factors of cohesion,internal friction angle,slope angle,slope height,ratio of pore water pressure and bulk density were selected as network input units.And,25 sets of sample data selected were used to complete the learning of RBF neural network.Then,the early warning model was used to make early warning analysis on instability of two slopes of Aoshan pit in Nanshan Iron Mine.Stability classification of the two slopes is respectively level 1 and level 3,that are,extremely stable and basically stable,which are accordant with the current actual situation.This early warning method is worth being applied and spread.
Keywords:RBF neural network  Slope instability  High-steep slope  Early warning model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《金属矿山》浏览原始摘要信息
点击此处可从《金属矿山》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号