首页 | 本学科首页   官方微博 | 高级检索  
     


A one-fluid,two-dimensional flow simulation model for a kettle reboiler
Authors:David A McNeil  Khalid Bamardouf  Bryce M Burnside
Affiliation:1. Dpt of Systems Engineering and Automatic Control, University of Valladolid, Doctor Mergelina s/n, 47011 Valladolid, Spain;7. Dpt of Electromechanical Engineering, University of Burgos, Avda. Cantabria s/n, 09006 Burgos;71. Dpt. Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Santiago, Chile;1. School of Engineering, Sun Yat-Sen University, Guangzhou 510006, China;2. Laboratoire de Thermocinétique, ISITEM, BP 90604, La Chantrerie, 44306 Nantes, Cedex 03, France
Abstract:A one-fluid, or algebraic slip, model has been developed to simulate two-dimensional, two-phase flow in a kettle reboiler. The model uses boundary conditions that allow for a change in flow pattern from bubbly to intermittent flow at a critical superficial gas velocity, as has been observed experimentally. The model is based on established correlations for void fraction and for the force on the fluid by the tubes. It is validated against pressure drop measurements taken over a range of heat fluxes from a kettle reboiler boiling R113 and n-pentane at atmospheric pressure.The model predicts that the flow pattern transition causes a reduction in vertical mass flux, and that the reduction is larger when the transition occurs at a lower level. Before transition, the frequently-used, one-dimensional model and the one-fluid model are shown to predict similar heat-transfer rates because similar magnitudes of mass flux are predicted. After transition, the one-dimensional model significantly over-predicts the mass fluxes. The average heat-transfer coefficient predicted by the one-fluid model is consequently about 10% lower. The one-fluid model shows that tube dryout can be expected at much lower heat fluxes than previously thought and that the fluid kinetic energy available to induce tube vibrations is significantly smaller.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号