首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于多尺度特征融合的目标检测算法
引用本文:张涛,张乐. 一种基于多尺度特征融合的目标检测算法[J]. 激光与光电子学进展, 2021, 58(2): 286-292
作者姓名:张涛  张乐
作者单位:天津大学电气自动化与信息工程学院,天津300072;天津大学电气自动化与信息工程学院,天津300072
摘    要:基于深度学习的目标检测器RetinaNet和Libra RetinaNet均是使用特征金字塔网络融合多尺度特征,但上述两个检测器存在特征融合不充分的问题.鉴于此,提出一种多尺度特征融合算法.该算法是在Libra RetinaNet的基础上进一步扩展,通过建立两条自底向上的路径构建两个独立的特征融合模块,并将两个模块产生...

关 键 词:机器视觉  卷积神经网络  目标检测  特征金字塔  特征融合

Multiscale Feature Fusion-Based Object Detection Algorithm
Zhang Tao,Zhang Le. Multiscale Feature Fusion-Based Object Detection Algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(2): 286-292
Authors:Zhang Tao  Zhang Le
Affiliation:(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
Abstract:The RetinaNet and Libra RetinaNet object detectors based on deep learning employ feature pyramid networks to fuse multiscale features.However,insufficient feature fusion is problematic in these detectors.In this paper,a multiscale feature fusion algorithm is proposed.The proposed algorithm is extended based on Libra RetinaNet.Two independent feature fusion modules are constructed by establishing two bottom-up paths,and the results generated by the two modules are fused with the original predicted features to improve the accuracy of the detector.The multiscale feature fusion module and Libra RetinaNet are combined to build a target detector and conduct experiments on different datasets.Experimental results demonstrate that the average accuracy of the added module detector on PASCAL VOC and MSCOCO datasets is improved by 2.2 and 1.3 percentage,respectively,compared to the Libra RetinaNet detector.
Keywords:machine vision  convolution neural network  object detection  feature pyramid  feature fusion
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号