首页 | 本学科首页   官方微博 | 高级检索  
     


The structure of slow crack interfaces in silicon nitride
Authors:N J Tighe
Affiliation:(1) National Bureau of Standards, Center for Materials Science, 20234 Washington, DC, USA
Abstract:Fracture interfaces formed in silicon nitride at high temperatures were studied using light and electron microscopy. The structure of the fracture interface depended on the type of silicon nitride fractured. High-purity, reaction-bonded silicon nitride always formed flat, relatively featureless, fracture surfaces. Fracture occurred by a brittle mode even at the highest temperature (1500° C) studied. The critical stress intensity factor for reaction-bonded silicon nitride (sim 2.2 MN m–3/2) is relatively low and is insensitive to temperature. By contrast, hot-pressed silicon nitride gave evidence of plastic flow during fracture at elevated temperatures. Crack growth in magnesia-doped, hot-pressed silicon nitride occurs by creep, caused by grain boundary sliding and grain separation in the vicinity of the crack tip. As a consequence of this behaviour, extensive crack branching was observed along the fracture path. The primary and secondary cracks followed intergranular paths; sometimes dislocation networks, generated by momentary crack arrest, were found in grains bordering the crack interface. As a result of the high temperature, cracks were usually filled with both amorphous and crystalline oxides that formed during the fracture studies. Electron microscopy studies of the compressive surfaces of fourpoint bend specimens gave evidence of grain deformation at high temperatures by diffusion and dislocation motion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号