首页 | 本学科首页   官方微博 | 高级检索  
     


An Interfacial Friction Law for a Circular EHL Contact Under Free Sliding Oscillating Motion
Authors:E Rigaud  D Mazuyer  J Cayer-Barrioz
Affiliation:1. Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, Université de Lyon, 36, avenue Guy de Collongue, 69134, Ecully Cedex, France
Abstract:The friction response of a lubricated interface under free sliding oscillating motion is investigated as a function of the contact pressure and the rheology of the lubricant in terms of viscosity and piezoviscosity. For loaded contacts, both velocity dependent friction, referred to as viscous damping, and friction independent of the instantaneous sliding velocity contribute to the energy dissipation. Viscous damping mainly corresponds to the dissipation in the lubricant meniscus surrounding the contact, while dissipation within the confined lubricated interface is mainly independent of the instantaneous sliding velocity. The friction coefficient independent of the instantaneous sliding velocity falls on a master curve for the wide range of tested operating conditions and lubricant rheological properties. The master curve is a logarithmic function of a dimensionless parameter corresponding to the ratio of the viscosity of the confined lubricant to the product of the pressure and a characteristic time. The physical meaning of this latter and the friction law are discussed considering the confined interface as a viscoelastic fluid or a non-Newtonian Eyring fluid.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号