首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进径向基函数网络的电力系统短期负荷预测
引用本文:赵宇红,汪普林,梁海滨. 基于改进径向基函数网络的电力系统短期负荷预测[J]. 衡阳工学院学报, 2011, 0(3): 42-45
作者姓名:赵宇红  汪普林  梁海滨
作者单位:[1]南华大学电气工程学院,湖南衡阳421001 [2]湖南衡阳电业局,湖南衡阳421001
基金项目:湖南省科技计划基金资助项目(2010FJ3157)
摘    要:电力系统短期负荷预测是电力生产部门的重要工作之一,本文利用径向基函数网络(RBF)进行负荷预测,针对RBF在负荷预测中隐含层节点数难求问题,提出了一种改进的最近邻聚类学习算法即可解决该难点,又可提高RBF神经网络收敛速度和负荷预测精度.根据某地区电网的实例进行研究,结果发现本文算法比改进前的算法预测的最小、最大相对误差分别减小0.14和1.12,证明了改进后算法有效性和可行性,为电力系统负荷预测提供了一种新途径.

关 键 词:电力系统  短期负荷预测  径向基函数  改进最近邻聚类

Power System Short Term Load Forecasting Based on Improved Radial Basis Function Network
ZHAO Yu-hong,WANG Pu-lin,LIANG Hai-bin. Power System Short Term Load Forecasting Based on Improved Radial Basis Function Network[J]. , 2011, 0(3): 42-45
Authors:ZHAO Yu-hong  WANG Pu-lin  LIANG Hai-bin
Affiliation:1. School of Electric Engineering, University of South China, Hengyang, Hunan 421001, China; 2. Hengyang Electric Power Bureau, Hengyang, Hunan 421001, China)
Abstract:Power system Short term load forecasting is one important work of the electricity production sector. In this paper,radial basis function network (RBF) is used in load forecast ing. Load forecasting for the RBF in the hidden layer nodes is hard to find. An improved nearest neighbor clustering algorithm is proposed to solve the difficulties and improve RBF neural network convergence speed and load forecasting accuracy. According to the instance of a regional power grid study,we found that the minimum,maximmn relative error were reduced by 0. 14 and 1.12,if we used the improved algorithm to predict. Case study results prove its effectiveness and feasibility. It provides a new way for the power system load forecasting.
Keywords:power system  short term load forecasting  radial basis function  improved nearest neighbor clustering
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号