首页 | 本学科首页   官方微博 | 高级检索  
     


Silica nanoparticles modified with a Schiff base ligand: An efficient adsorbent for Th(IV), U(VI) and Eu(III) ions
Authors:Zahra Shiri-Yekta  Mohammad Reza Yaftian  Abdolreza Nilchi
Affiliation:177. Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, P. O. Box 45371-38791, Zanjan, Iran
277. Jaber Ibn Hayan Research Laboratories of Iran, P. O. Box 11365-8486, Tehran, Iran
Abstract:Modification of SiO2 nanoparticles by salicylaldiminepropyl results in efficient adsorbents for removal of Th4+, UO 2 2+ and Eu3+ ions from aqueous solutions. The effect of parameters influencing the adsorption efficiency such as aqueous phase pH, contact time, initial metal ions concentration, adsorbent dosage and temperature dependency of the process was verified and discussed. Under optimal conditions (pH 5.5, adsorbent dosage 0.05 g, contact time 30 min. and 25 °C), thorium and uranyl ions (initial concentration 20 mg/l) were quantitatively removed from 20 ml of sample solution. Under such conditions 85% of europium ions was removed. Comparison of the adsorption efficiency of the studied modified nano-particles with those unmodified ones shows a shift for uptake of the metal ions vs. pH curves towards lower pH values by applying the modified adsorbents. In addition, a significant improvement of europium ions adsorption was observed by using the modified nanoparticles. Kinetics of the process was studied by considering a pseudo second-order model. This model predicts chemisorption for the adsorption mechanism. Freundlich, Langmuir and Temkin models were suitable for describing the equilibrium data of Th4+, UO2 2+ and Eu3+ adsorption process, respectively. Thermodynamic investigation reveals the adsorption process of the studied ions is entropy driven.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号