首页 | 本学科首页   官方微博 | 高级检索  
     


Liquid crystalline elastomer actuators with dynamic covalent bonding: Synthesis,alignment, reprogrammability,and self-healing
Affiliation:1. Gisela and Erwin Sick Chair of Micro-Optics, Department for Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 102, 79110 Freiburg i. Br., Germany;2. Institut für Organische Chemie, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany;1. Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, United States;2. Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, United States;3. Department of Mechanical Engineering, University of Houston, N207 Engineering Bldg. 1, 4726 Calhoun Rd, Houston, TX 77204, United States;4. Materials Science and Engineering Program, University of Houston, 1010 SERC Bldg. 545, 3517 Cullen Blvd, Houston, TX 77204, United States;1. Department of Physics & Astronomy, University of California Irvine, Irvine, CA 92697, USA;2. Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA;1. Yangzhou Technology Innovation Research Center for Carbon Neutrality of Yangzhou University, School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China;2. Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, PR China
Abstract:Liquid crystalline elastomers (LCEs) have demonstrated tremendous potential in applications such as soft robotics, biomedical materials, electronics, sensors, and biomimetic systems. The physical properties of LCEs are controlled by the degree of crosslinking, nature of the mesogens, and mesogen orientation in the LCE network structure. A wide range of dynamic covalent bonds (DCBs) capable of dynamic bond exchange reactions (DBERs) have been introduced into LCE structures to obtain intelligent materials in recent decades. In this review article, we discuss the molecular constitution, macrostructure, morphing mechanism, recent advances in LCEs with dynamic covalent bonds, the influence of DCBs on self-healing, reprogramming and reprocessing properties of LCE actuators, and challenges and opportunities in incorporating dynamic chemistry in the field of LCE actuators.
Keywords:Liquid crystalline elastomer  Dynamic covalent bonding  Actuators  Self-healing  Reprogrammability  LCEs"}  {"#name":"keyword"  "$":{"id":"pc_RyUMbCUAKn"}  "$$":[{"#name":"text"  "_":"liquid crystalline elastomers  DCBs"}  {"#name":"keyword"  "$":{"id":"pc_hIPUEO5mV2"}  "$$":[{"#name":"text"  "_":"dynamic covalent bonds  DBERs"}  {"#name":"keyword"  "$":{"id":"pc_zCjPaenRue"}  "$$":[{"#name":"text"  "_":"dynamic bond exchange reactions  SMPs"}  {"#name":"keyword"  "$":{"id":"pc_25kL0x663h"}  "$$":[{"#name":"text"  "_":"shape memory polymers  LC"}  {"#name":"keyword"  "$":{"id":"pc_uHt9rLytOo"}  "$$":[{"#name":"text"  "_":"liquid crystalline  LCPs"}  {"#name":"keyword"  "$":{"id":"pc_YRlqCNkaRz"}  "$$":[{"#name":"text"  "_":"liquid crystalline polymers  liquid crystalline elastomers with dynamic covalent bonds  DTBER"}  {"#name":"keyword"  "$":{"id":"pc_qVcGYmXLs5"}  "$$":[{"#name":"text"  "_":"dynamic transesterification bond exchange reaction  MDLCEs"}  {"#name":"keyword"  "$":{"id":"pc_rp7gNM5C5f"}  "$$":[{"#name":"text"  "_":"monodomain LCEs  LPUV"}  {"#name":"keyword"  "$":{"id":"pc_64WHMKaYUM"}  "$$":[{"#name":"text"  "_":"linearly polarised UV light  glass-to-rubbery transition temperature  nematic-to-isotropic transition temperature  vitrification temperature  DA"}  {"#name":"keyword"  "$":{"id":"pc_XS5dF6zx89"}  "$$":[{"#name":"text"  "_":"Diels–Alder  PETMP"}  {"#name":"keyword"  "$":{"id":"pc_JD0jd7kncl"}  "$$":[{"#name":"text"  "_":"pentaerythritol tetrakis(3-mercaptopropionate)  DBTDL"}  {"#name":"keyword"  "$":{"id":"pc_mn7MX5XY5z"}  "$$":[{"#name":"text"  "_":"dibutyltin dilaurate  DSER"}  {"#name":"keyword"  "$":{"id":"pc_KNM50762nn"}  "$$":[{"#name":"text"  "_":"disulfide exchange reaction  DMAP"}  {"#name":"keyword"  "$":{"id":"pc_HrgC2EgAUH"}  "$$":[{"#name":"text"  "_":"4-(dimethylamino)pyridine  RM82"}  {"#name":"keyword"  "$":{"id":"pc_MQE31PWGlL"}  "$$":[{"#name":"text"  "_":"(1  4-bis-[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene)  BDB"}  {"#name":"keyword"  "$":{"id":"pc_hKUDLukf2y"}  "$$":[{"#name":"text"  "_":"2  2′-(1  4-phenylene)-bis[4-mercaptan-1  3  2-dioxaborolane]  MBB"}  {"#name":"keyword"  "$":{"id":"pc_OC0FtijlrF"}  "$$":[{"#name":"text"  "_":"4-methoxyphenyl-4-(1-butenoxy) benzoate  TPTB"}  {"#name":"keyword"  "$":{"id":"pc_9CkHiOJ2GZ"}  "$$":[{"#name":"text"  "_":"2  4  6-tris(4-(dec-9-en-1-yloxy)phenyl)-1  3  5  2  4  6-trioxatriborinane  PMHS"}  {"#name":"keyword"  "$":{"id":"pc_3l13l8tTbZ"}  "$$":[{"#name":"text"  "_":"poly[3-mercaptopropylmethylsiloxane]  SWCNT"}  {"#name":"keyword"  "$":{"id":"pc_O1HC7ju46T"}  "$$":[{"#name":"text"  "_":"single-walled carbon nanotube  TMA-DMSiO"}  {"#name":"keyword"  "$":{"id":"pc_UjCCN35ZvJ"}  "$$":[{"#name":"text"  "_":"bis(tetramethylammonium) oligodimethyl siloxanediolate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号