首页 | 本学科首页   官方微博 | 高级检索  
     

分类模式挖掘在属性预测中的应用
引用本文:李祥民,张佳骥,艾伟. 分类模式挖掘在属性预测中的应用[J]. 无线电工程, 2010, 40(9): 44-47
作者姓名:李祥民  张佳骥  艾伟
作者单位:中国电子科技集团公司第五十四研究所,河北,石家庄,050081
摘    要:数据挖据是一种处理海量数据的技术。分类挖掘是数据挖掘的重要方法。决策树算法能有效在训练数据集上建立数据属性和类别的映射。利用决策树算法建立目标数据库分类器,对数据对象的缺失属性预测。针对分类预测模型对单个目标多个预测类别的现象,提出一种单个目标预测结果的综合分析算法,处理结果得到单个目标的预测类别及其可信度。分类结果可用于空缺或错误字段补全或校正。

关 键 词:分类模式  数据挖掘  属性  决策树

Application of Classification Mining in Attribution Prediction
LI Xiang-min,ZHANG Jia-ji,AI Wei. Application of Classification Mining in Attribution Prediction[J]. Radio Engineering of China, 2010, 40(9): 44-47
Authors:LI Xiang-min  ZHANG Jia-ji  AI Wei
Affiliation:( The 54th Research Institute of CETC, Shijiazhuang Hebei 050081, China )
Abstract:Data mining is a technology for processing mass data. Classification mining is an important method of data mining. Decision tree algorithm generates the map between attributes and class labels in training data sets. A classifier of object database is constructed based on decision tree algorithm and is used to predict the null fields. A method of analyzing multi-prediction results is proposed, and the final prediction result and confidence for a single target is obtained. Classification results are used in patching the null and emendation.
Keywords:classification mode  data ming  attribution  decision tree
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号