首页 | 本学科首页   官方微博 | 高级检索  
     


Summary of SAC Case Study Building Analyses
Authors:Gregory G Deierlein
Affiliation:Assoc. Prof. Dept. of Civ. and Envir. Engrg., Terman Engrg. Ctr., Stanford Univ., Stanford, CA 94305-4020.
Abstract:Summarized in this paper are the major findings from analytical studies of nine steel moment frame buildings conducted under Phase 1 of the SAC Steel Project. The buildings range in height from two to seventeen stories and most of them experienced damage to welded beam-column connections during the Northridge earthquake of 1994. Elastic response spectrum, inelastic static pushover, and elastic and inelastic time-history analyses were conducted using ground motion data representative of the Northridge earthquake to establish the loading∕deformation demands that the buildings experienced. The primary performance indices obtained from the analyses were demand-to-capacity ratios, interstory drift ratios, and inelastic hinge rotations. Maximum ratios of elastic member force demands to plastic strengths ranged between 1.0 and 2.0; maximum inelastic hinge rotations were 0.005–0.010 rad; and maximum interstory drift ratios were from 1 to 2%. These damage indices increased by 50%–150% under more severe ground motions recorded during the Northridge earthquake at the Sylmar site. Accuracy of the analyses is shown to be sensitive to a number of modeling parameters including finite joint size, joint panel behavior, composite beam action, strain hardening, second-order (P-Δ) effects, and three-dimensional response. Overall, there was only modest correlation between the frame performance indices and the observed connection damage, due largely to the fact that significant aspects of the connection fracture behavior are not captured in the frame analyses.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号