首页 | 本学科首页   官方微博 | 高级检索  
     

基于多方向的各向异性边缘检测算法
引用本文:王益艳. 基于多方向的各向异性边缘检测算法[J]. 计算机与数字工程, 2020, 48(1): 167-169,257
作者姓名:王益艳
作者单位:四川文理学院智能制造学院 达州 635000;达州智能制造产业技术研究院 达州 635000
基金项目:达州市科技计划应用基础研究项目;四川文理学院校级重点科研项目
摘    要:针对传统边缘检测算法抗噪性差的不足,提出了一种多方向的各向异性边缘检测算法。该算法构造了4个具有各向异性的5阶差分模板,对其进行归一化处理后,分别对待检测图像进行卷积处理,根据检测算法在各方向上卷积结果的幅值和方向信息得到灰度边缘图,最后采用最大类间方差法确定阈值进行边缘二值化。多组仿真实验结果表明,该方法能有效实现边缘提取,比传统方法具有更高的检测精度和更强的噪声鲁棒性。

关 键 词:边缘检测  各向异性  归一化因子  卷积

Anisotropic Edge Detection Algorithm Based on Multi-Direction
WANG Yiyan. Anisotropic Edge Detection Algorithm Based on Multi-Direction[J]. Computer and Digital Engineering, 2020, 48(1): 167-169,257
Authors:WANG Yiyan
Affiliation:(School of Intelligent Manufacturing,Sichuan University of Arts and Science,Dazhou 635000;Dazhou Industrial Technology Institute of Intelligent Manufacturing,Dazhou 635000)
Abstract:The traditional edge detection operators have sensitivities to noise,an anisotropic edge detection algorithm based on multi-direction is proposed in this paper.Firstly,four anisotropic fifth-order differential templates are constructed,then the pending image with convolution after being normalized,the gray edge image will be obtained by magnitude and direction information of convolution results based on detection operator in all directions,and finally utilizes the method of maximum classes square errors to determine a threshold and extract binarization edges.Several sets of simulation results demonstrate the feasibility and effective ness of the proposed algorithm,it can obtain clear edge and high detection accuracy,m eanwhile,the algorithm has better ability of preserving the edge details and better robustness to noises than traditional methods.
Keywords:edge detection  anisotropy  normalization factor  convolution
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号