首页 | 本学科首页   官方微博 | 高级检索  
     

一种特征增强的Tri-CNN行人再识别方法
作者姓名:周芳宇  陈淑荣
作者单位:上海海事大学信息工程学院,上海201306
摘    要:针对行人再识别中遮挡导致提取的高层特征分辨率低而影响识别率的问题,建立一种基于Tri-CNN的特征增强行人再识别方法。首先,对池化层提取的图像特征进行PCA降维,根据典型相关分析策略(CCA)融合特征,提取更具判别力的行人特征。其次,引入空间递归模型(SRM)对遮挡行人特征进行空间多向检测,提高对遮挡行人的识别率。最后,根据欧氏距离度量准则,分别验证正、负样本对间的距离,联合Softmax损失函数和Triplet损失函数优化网络模型,进而判别是否为同一行人。在MARS和ETHZ这2个数据集上进行实验,结果表明本文方法有效解决了一般遮挡识别问题,并显著提高了行人再识别精度。

关 键 词:行人再识别  Tri-CNN  PCA降维  典型相关分析  空间递归模型  
收稿时间:2020-09-24
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号