首页 | 本学科首页   官方微博 | 高级检索  
     

基于图表示学习的会话感知推荐模型
引用本文:曾义夫, 牟其林, 周乐, 蓝天, 刘峤. 基于图表示学习的会话感知推荐模型[J]. 计算机研究与发展, 2020, 57(3): 590-603. DOI: 10.7544/issn1000-1239.2020.20190188
作者姓名:曾义夫  牟其林  周乐  蓝天  刘峤
作者单位:1.1(电子科技大学信息与软件工程学院 成都 610054);2.2(提升政府治理能力大数据应用技术国家工程实验室(中电科大数据研究院有限公司) 贵阳 550022);3.3(中电科大数据研究院有限公司 贵阳 550022) (ifz@std.uestc.edu.cn)
基金项目:国家自然科学基金;中央高校基本科研业务费专项;实验室开放基金;四川省科技服务业示范项目
摘    要:根据历史记录预测用户的下一次点击(即基于会话的推荐)是推荐系统中一个重要的子任务.重点研究会话推荐中如何在不牺牲预测准确性的情况下缓解用户的兴趣漂移问题,提高用户满意度.基本思想是从全局统计的角度出发,建立一个用于表示物品先后点击顺序的物品依赖关系图,据此提出一种图表示学习算法,生成可以保留关联物品间复杂关联关系的物品向量表达,最后,基于长/短期记忆机制,将物品向量表达作为“固定”输入,从而构建一个可以同时捕捉用户长期兴趣和短期兴趣的会话感知推荐模型.不同于其他相关工作,首次提出将下一次点击预测模型建立在“固定”物品表达的基础上.在公开数据集上的实验结果表明:提出的推荐模型在预测准确性和推荐多样新颖性上的表现优于其他相关方法.

关 键 词:基于会话的推荐系统  行为建模  图表示学习  用户兴趣  神经网络

Graph Embedding Based Session Perception Model for Next-Click Recommendation
Zeng Yifu, Mu Qilin, Zhou Le, Lan Tian, Liu Qiao. Graph Embedding Based Session Perception Model for Next-Click Recommendation[J]. Journal of Computer Research and Development, 2020, 57(3): 590-603. DOI: 10.7544/issn1000-1239.2020.20190188
Authors:Zeng Yifu  Mu Qilin  Zhou Le  Lan Tian  Liu Qiao
Affiliation:1.1(School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054);2.2(Big Data Application on Improving Government Governance Capabilities National Engineering Laboratory (CETC Big Data Research Institute Co., Ltd.), Guiyang 550022);3.3(CETC Big Data Research Institute Co., Ltd., Guiyang 550022)
Abstract:Predicting users’ next-click according to their historical session records, also known as session-based recommendation, is an important and challenging task and has led to a considerable amount of work towards this aim. Several significant progresses have been made in this area, but some fundamental problems still remain open, such as the trade-off between users’ satisfaction and predictive accuracy of the models. In this study, we consider the problem of how to alleviate user interests drift without sacrificing the predictive accuracy. For this purpose, we first set up an item dependency graph to represent the click sequence of items from a global, statistical perspective. Then an efficient graph embedding learning algorithm is proposed to produce item embeddings which preserve the information flow properties of the system and the structural dependency between each pair of items. Finally, the proposed model is capable of capturing the users’ general interests and their temporal browsing interests simultaneously by using of a BiLSTM based long/short term memory mechanism. Experimental results on two real-world data sets show that the proposed model not only performs better in terms of predictive accuracy but also demonstrates better diversity and novelty in its recommendations as compared with other state-of-the-art methods.
Keywords:session-based recommendation system  behavior modeling  graph representation learning  user interests  neural network
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机研究与发展》浏览原始摘要信息
点击此处可从《计算机研究与发展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号