首页 | 本学科首页   官方微博 | 高级检索  
     

激光冲击强化对太阳能热发电用渗铝钢显微组织和高温拉伸性能的影响
引用本文:李微,许栋梁,左炉,陈荐,李传常,何建军,任延杰,李聪,邱玮,张圣德. 激光冲击强化对太阳能热发电用渗铝钢显微组织和高温拉伸性能的影响[J]. 表面技术, 2019, 48(1): 1-9
作者姓名:李微  许栋梁  左炉  陈荐  李传常  何建军  任延杰  李聪  邱玮  张圣德
作者单位:长沙理工大学 能源与动力工程学院 能源与高效清洁重点实验室,长沙 410114;清洁能源与智能电网湖南省2011协同创新中心,长沙 410114;日本电力中央研究所,日本 东京 240-0196
基金项目:国家自然科学基金(51675058);湖南省自然科学基金项目(2018JJ3531);湖南省教育厅科学研究重点项目(16A002);湖南省创新计划项目(2018RS3073)
摘    要:目的研究激光冲击强化前后,渗铝321不锈钢的显微组织变化和高温拉伸行为。方法采用固体粉末包埋渗铝法对321奥氏体不锈钢板材拉伸试样进行渗铝处理,制成渗铝钢,再对渗铝钢中间8 mm?25 mm标距段进行双面激光冲击强化处理,激光波长为1064 nm,单脉冲能量为7 J,脉宽为20 ns,冲击次数为1次和3次,圆光斑直径为2.6~3 mm,搭接率50%,黑胶布为保护层,水为约束层,并评价激光冲击前后渗铝钢表面完整性。对渗铝钢在620下进行高温拉伸试验,获得真应力-真应变曲线、屈服强度、抗拉强度以及断后延伸率,并在扫描电镜下观察拉伸断口微观形貌。结果渗铝钢的表面粗糙度和显微硬度随着激光功率密度和冲击次数的增加而提高。激光冲击强化后的渗铝钢表现出更高的屈服强度、抗拉强度和断后延伸率,其中,以6.59 GW/cm2激光密度三次冲击的渗铝钢的高温拉伸性能最佳。激光冲击强化后的渗铝钢高温拉伸断口表现出韧性断裂特征。结论激光冲击强化后,渗铝钢表面发生明显塑性变形,形成了起伏较大的凹坑和凸台,改变了材料粗糙度。表面晶粒细化、位错运动加剧以及位错增殖使得材料表面硬度和激光冲击硬化影响层深度提高;另外,引入的高幅残余压应力的释放能够抵消外加拉应力,延缓表面裂纹的形核和扩展。激光冲击强化显著改善了渗铝钢力学性能。

关 键 词:激光冲击强化  321奥氏体不锈钢  渗铝  显微组织  高温拉伸
收稿时间:2018-11-10
修稿时间:2019-01-20

Effect of Laser Shock Strengthening on Microstructure and High Temperature Tensile Properties of Aluminized Steel for Solar Thermal Power Generation
LI Wei,XU Dong-liang,ZUO Lu,CHEN Jian,LI Chuan-chang,HE Jian-jun,REN Yan-jie,LI Cong,QIU Wei and ZHANG Sheng-de. Effect of Laser Shock Strengthening on Microstructure and High Temperature Tensile Properties of Aluminized Steel for Solar Thermal Power Generation[J]. Surface Technology, 2019, 48(1): 1-9
Authors:LI Wei  XU Dong-liang  ZUO Lu  CHEN Jian  LI Chuan-chang  HE Jian-jun  REN Yan-jie  LI Cong  QIU Wei  ZHANG Sheng-de
Affiliation:1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China,1.Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid, Changsha 410114, China and 3.Japan Electric Power Central Research Institute, Tokyo 240-0196, Japan
Abstract:
Keywords:laser shock processing   321 austenitic stainless steel   aluminizing   microstructure   high-temperature tensile
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号