首页 | 本学科首页   官方微博 | 高级检索  
     

基于Faster R-CNN模型的低空平台偏振高光谱目标检测
引用本文:黄伟, 曹宇剑, 徐国明. 基于Faster R-CNN模型的低空平台偏振高光谱目标检测[J]. 红外技术, 2019, 41(7): 600-606.
作者姓名:黄伟  曹宇剑  徐国明
作者单位:中国电子科技集团公司第二十七研究所,河南郑州,450047;中国人民解放军陆军炮兵防空兵学院,安徽合肥,230031;中国人民解放军陆军炮兵防空兵学院,安徽合肥 230031;安徽新华学院信息工程学院,安徽合肥 230088
基金项目:国家自然科学基金;中国博士后科学基金;安徽省自然科学基金
摘    要:随着无人机等低空平台在侦察领域的不断扩展以及对性能要求的不断提高,各应用场景对目标检测精度和速度也提出了越来越高的要求.传统的目标成像方法难以满足图像质量需求,人工识别目标的方法也无法应对战场环境的快速变化.结合深度学习和偏振高光谱成像技术的发展,通过模拟偏振高光谱低空目标检测平台,提出基于Faster R-CNN的地面军事目标检测方法.采用区域建议网络模块进行模型训练,而在目标检测阶段通过对特征图进行兴趣区域池化操作得到建议特征图,最后利用建议特征图完成目标类别判定.实验选取3种典型的军事车辆缩比模型,通过偏振高光谱相机在室内外模拟环境中获取目标在不同场景条件的图像数据,以及某型无人机在低空条件下的地面车辆目标数据进行实验验证.实验表明,该方法在有效完成地面目标的检测时,能够达到理想的检测精度和速度.

关 键 词:深度学习  偏振高光谱图像  目标检测  无人机

Polarized Hyperspectral Object Detection with Faster R-CNN for Low-Altitude Platforms
HUANG Wei, CAO Yujian, XU Guoming. Polarized Hyperspectral Object Detection with Faster R-CNN for Low-Altitude Platforms[J]. Infrared Technology , 2019, 41(7): 600-606.
Authors:HUANG Wei  CAO Yujian  XU Guoming
Affiliation:(The 27th Research Institute of CETC,Zhengzhou 450047,China;Army Artillery and Air Defense Forces Academy of PLA,Hefei 230031,China;Information Engineering College,Anhui Xinhua University,Hefei 230088,China)
Abstract:The use of unmanned aerial vehicles (UAV) for reconnaissance requires continuous improvements in performance,as each new type of scene observed can place more stringent requirements for the accuracy and speed of object detection.Traditional object-imaging methods have difficulty meeting such requirements,and artificial object recognition is not suited for rapidly changing battle field environments.Leveraging the concomitant development of deep learning and hyperspectral polarization imaging,ground object detection based on fast R-CNNs is proposed that’s imulates a polarized hyperspectral low-altitude object detection platform.We describe a region proposal network module for training models.In its object detection phase,this approach generates a feature map by pooling feature regions into the map,which is then used to complete the object categorization decision.Three typical scaled models of military vehicles were selected to test the technique experimentally.With a polarization hyperspectral camera,object images in different scene conditions were acquired in simulated indoor and outdoor environments,and ground vehicles were successfully observed by a low-altitude UAV.The experimental results show that the proposed method achieves the ideal detection accuracy and speed when the ground object is effectively detected.
Keywords:deep learning  polarized hyperspectral image  object detection  unmanned aerial vehicle (UAV)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《红外技术》浏览原始摘要信息
点击此处可从《红外技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号