首页 | 本学科首页   官方微博 | 高级检索  
     

基于邻域信息的遥感图像模糊聚类及并行算法设计
引用本文:龚雪晶慈林林姚康泽. 基于邻域信息的遥感图像模糊聚类及并行算法设计[J]. 计算机应用, 2007, 27(10): 2512-2514
作者姓名:龚雪晶慈林林姚康泽
作者单位:北京理工大学,计算机科学技术学院,北京,100083;装备指挥技术学院,信息装备系,北京,101416;北京理工大学,计算机科学技术学院,北京,100083;第二炮兵装备研究院,信息装备系,北京,100085
摘    要:在运用于遥感图像的分类时,为考虑图像像元间的空间相关性,首先在聚类的迭代过程中根据相邻像元的隶属度,确定邻域内的优势类别,同时引入反映空间相邻关系的加权系数,修正中心像元的隶属度。其次考虑算法用于图像分割的通信复杂度及动态聚类时的空间相邻关系,提出了相应的并行实现方案。最后,通过实验数据证明了算法在减少聚类的迭代次数以及提高聚类结果精度等方面的有效性,其并行方案也取得了较好的线性加速比。

关 键 词:模糊C均值聚类算法  邻域信息  模糊隶属度  并行算法
文章编号:1001-9081(2007)10-2512-03
收稿时间:2007-04-16
修稿时间:2007-04-16

Parallel implementation of neighbor-based FCM clustering for remote sensing image
GONG Xue-jing,CI Lin-lin,YAO Kang-ze. Parallel implementation of neighbor-based FCM clustering for remote sensing image[J]. Journal of Computer Applications, 2007, 27(10): 2512-2514
Authors:GONG Xue-jing  CI Lin-lin  YAO Kang-ze
Abstract:Considering the spatial relationship of pixels when it is used in classification for remote-sensing imagery, Neighbor-based FCM algorithm was put forward by modifying the value of fuzzy membership degree with the neighbor information during the clustering iterations. We use dominant class, if it can be determined in a fixed neighbor region, or the weighted parameters based on the distance of neighbors to perfect the membership degree of central pixel. Then parallel implement for the algorithm was also proposed by taking account of the communication complexity and the spatial relationship for image partition. In the end, the experimental data indicate the efficiency of the algorithm in decreasing the clustering iterations and increasing the classified precision, and the parallel algorithm also achieves the satisfying linear speedup.
Keywords:Fuzzy C-Means (FCM) clustering  neighbor information  fuzzy membership degree  parallel algorithm
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号