一种基于L1范数的目标源测向算法 |
| |
引用本文: | 李枝灵,李凯,岳晓果,亓峰,陈兴渝. 一种基于L1范数的目标源测向算法[J]. 北京邮电大学学报, 2017, 40(z1): 103-107. DOI: 10.13190/j.jbupt.2017.s.023 |
| |
作者姓名: | 李枝灵 李凯 岳晓果 亓峰 陈兴渝 |
| |
作者单位: | 北京邮电大学网络与交换技术国家重点实验室,北京,100876;总参信息化部驻航天科技集团军事代表室,北京,100015 |
| |
摘 要: | 在高维信号处理中,为了有效地估计信号的角度,提出了基于L1范数的二阶锥规划算法(L1-SVD).该算法将稀疏重构用于目标源测向技术,在窄带信号的模型基础上,引进稀疏域模型,将一个高维信号的角度估计问题抽象成欠定方程组求解问题.经Matlab仿真验证,与其他最小范数法以及经典多重信号分类算法相比,该算法在较大的信噪比范围内都能取得较低的重构误差和较高的成功概率,对相关性较大的信号也能进行识别.这证明了该算法能够有效地实现目标源测向.
|
关 键 词: | 高维信号处理 L1-二阶锥规划算法 稀疏重构 信号角度估计 |
A Target Source Direction Estimation Algorithm Based on L1 Norm |
| |
Abstract: | To estimate the angle signal in the high-dimensional signal processing efficiently,a second-order cone algorithm based on L1 norm(L1-SVD) is proposed.The algorithm applys sparse reconstruction to the target direction finding technology.Sparse domain model is introduced based on narrowband signal model,in which angle estimation problem of a high-dimensional signal is abstracted into underdetermined equations problems.Simulation results with Matlab show that,compared with other minimum norm methods and classic multiple signal classification algorithm,L1-SVD can achieve lower reconstruction error and a higher probability of success in a wide range of signal to noise ratio and identify the signal with larger correlation.So it is proved that the algorithm can achieve the target source direction estimation effectively. |
| |
Keywords: | high-dimensional signal processing L1-SOC sparse reconstruction signal angle estimation |
本文献已被 万方数据 等数据库收录! |
|