首页 | 本学科首页   官方微博 | 高级检索  
     


Shear mechanism modelling of heavy tow braided composites using a meso-mechanical damage model
Affiliation:1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;2. Department of Civil Engineering, Monash University, Building 60, Clayton, VIC 3800, Australia;1. Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Science, Perm 614013, Russia;2. Mining institute of the Ural Branch of Russian Academy of Sciences, Perm 614007, Russia
Abstract:Heavy tow braid reinforced composites are a potential substitute for metals in automotive and other transport applications. These composites, if properly designed, can provide lightweight efficient load bearing structural members that can also absorb high specific energy under impact and crash loading. Many of these components are ‘beam like’ members that must resist large transverse deformations at high force levels, thereby absorbing high levels of energy. This class of composite component is particularly considered in this paper.An effective means to achieve high energy absorption is careful design of the fabric architecture so that shearing mechanisms of the fibre/matrix interface, without premature fibre failure, are possible. Characterisation and modelling of progressive shear damage and failure occurring in biaxial carbon and glass braided composites are investigated. Fibre re-orientation and fibre/matrix interface damage is measured using an optical strain measuring method based on digital image correlation (DIC). This is then used to provide input to a meso-mechanical damage model in an explicit finite element code. A modelling approach using coupled layers of equivalent unidirectional plies is used to represent the biaxial braid composite and validation of the approach has been performed against test coupons and beam structures loaded transversally to failure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号