首页 | 本学科首页   官方微博 | 高级检索  
     


Development of γ phase stacking faults during high temperature creep of Ru-containing single crystal superalloys
Affiliation:1. Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA;2. General Electric Company, Aviation Division, Cincinnati, OH, USA
Abstract:An unusual deformation mode involving the formation of intrinsic stacking faults in the γ matrix of experimental Ru-containing γγ′ superalloys with high Co and Re contents during high temperature creep at 950 °C/290 MPa has been observed. The morphology, distribution and dependence of these stacking faults on alloy chemistry has been investigated along with their formation mechanism. Additions of Re and Co substantially decrease the stacking fault energy of the γ matrix. The observed stacking faults in the γ matrix form by the dissociation of a/2〈1 1 0〉 matrix dislocations with Burgers vectors perpendicular to the loading direction in the early stages of creep. The dependence of creep properties on elemental additions that influence stacking fault energy is discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号