首页 | 本学科首页   官方微博 | 高级检索  
     


Sequential Element Design With Built-In Soft Error Resilience
Authors:Zhang  M Mitra  S Mak  T M Seifert  N Wang  N J Shi  Q Kim  K S Shanbhag  N R Patel  S J
Affiliation:Intel Corp., Folsom, CA;
Abstract:This paper presents a built-in soft error resilience (BISER) technique for correcting radiation-induced soft errors in latches and flip-flops. The presented error-correcting latch and flip-flop designs are power efficient, introduce minimal speed penalty, and employ reuse of on-chip scan design-for-testability and design-for-debug resources to minimize area overheads. Circuit simulations using a sub-90-nm technology show that the presented designs achieve more than a 20-fold reduction in cell-level soft error rate (SER). Fault injection experiments conducted on a microprocessor model further demonstrate that chip-level SER improvement is tunable by selective placement of the presented error-correcting designs. When coupled with error correction code to protect in-pipeline memories, the BISER flip-flop design improves chip-level SER by 10 times over an unprotected pipeline with the flip-flops contributing an extra 7-10.5% in power. When only soft errors in flips-flops are considered, the BISER technique improves chip-level SER by 10 times with an increased power of 10.3%. The error correction mechanism is configurable (i.e., can be turned on or off) which enables the use of the presented techniques for designs that can target multiple applications with a wide range of reliability requirements
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号