首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化的Shearlet自适应图像去噪
引用本文:赵嘉,孙辉,邓承志,陈习. 基于粒子群优化的Shearlet自适应图像去噪[J]. 小型微型计算机系统, 2011, 32(6)
作者姓名:赵嘉  孙辉  邓承志  陈习
作者单位:南昌工程学院信息工程学院,南昌,330099
基金项目:国家自然科学基金项目(50539020,60462003)资助; 江西自然科学基金项目(2007GZS1056,2009GZW0020,2010GZS0163,2010GZW0049)资助; 江西教育厅科技项目(GJJ09365,GJJ09366,GJJ10630,GJJ10269,GJJ11250)资助
摘    要:研究Shearlet变换域图像去噪阈值选取的问题,提出Shearlet变换域图像去噪自适应阈值选取方法.该方法根据Shear-let变换域不同尺度和方向系数的分布特性,采用粒子群优化算法自适应地确定各尺度和方向的最优阈值,实现基于图像内容的自适应去噪.仿真实验表明,该方法能有效滤除图像的噪声,较好地保留图像的边缘信息.同时,去噪后图像具有更高的峰值信噪比(PSNR).

关 键 词:Shearlet变换  粒子群优化算法  图像去噪  峰值信噪比  

Particle Swarm Optimization Based Adaptive Image Denoising in Shearlet Domain
ZHAO Jia,SUN Hui,DENG Cheng-zhi,CHEN Xi. Particle Swarm Optimization Based Adaptive Image Denoising in Shearlet Domain[J]. Mini-micro Systems, 2011, 32(6)
Authors:ZHAO Jia  SUN Hui  DENG Cheng-zhi  CHEN Xi
Affiliation:ZHAO Jia,SUN Hui,DENG Cheng-zhi,CHEN Xi(School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China)
Abstract:The threshold selection of image denoising in shearlet domain was firstly researched.And then,an adaptive threshold selection method was proposed.According to the distribution characteristics of shearlet coefficients in different scale and direction,the optimal threshold was adaptively determined by particle swarm optimization.Using the proposed optimal threshold,the noisy image can be adaptively denoised based on image content.Simulation results indicate that the method can filter noise effectively and pre...
Keywords:shearlet transform  particle swarm optimization  image denoising  PSNR  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号