首页 | 本学科首页   官方微博 | 高级检索  
     

铝合金等离子体基离子注入形成AIN/TiN层及其耐磨性能
引用本文:廖家轩,夏立芳,孙跃.铝合金等离子体基离子注入形成AIN/TiN层及其耐磨性能[J].材料科学与工艺,2001,9(1):75-80.
作者姓名:廖家轩  夏立芳  孙跃
作者单位:哈尔滨工业k大学材料科学与工程学院,
基金项目:国家自然科学基金,59771059,
摘    要:用X射线光电子能谱(XPS)和小掠射角X射线衍射(GAXRD)研究了铝合金LY12等离子体基离子注入形成AIN/TiN改性层的成分分布及相结构.在此基础上测量了改性层的纳米硬度,并进行了摩擦磨损试验.结果表明,氮和钛都能有效地注入到铝合金里,后注入的元素对先注元素的含量和分布有重要影响.钛、氮同时注入在试样表面形成一层稳定的钛、氮化合层.和未改性试样相比,所形成的AIN/TiN改性层纳米硬度及承载能力都提高5倍以上.在低滑动载荷下,摩擦系数减小70%以上,耐磨性提高近10倍,耐磨寿命提高了近6倍,粘着磨损程度显著减轻.随着载荷的增加,相应的耐磨性能有所降低.适当的改性层结构及其中分布的TiO2、TiN、TiAl3、Al2O3、AIN等相是性能改善的主要原因.,The disfribution of composition and microstructure of the AIN/TiN layer of aluminum alloy 2024 im-planted by Plasma Based Ion Implantation(PBⅡ) were characterized using X -ray Photoelectron Spectroscopy(XPS) and Glancing Angle X -ray Diffraction (GAXRD). XPS results show that N and Ti can be implantedinto 2024 effectively, the content of N presents a Gaussian - like distribution, and that of Ti decreases gradu-ally along the implanted direction from the surface. The post -implanted elements have great influence on thecontent and depth profile of the pre - implanted ones. The simultaneously implanted Ti and N can form asteady layer of Ti and N on the surface. In comparison with 2024, the AIN/TiN layer has remarkably improvedthe mechanical properties, of which both the nano - hardness and the load bearing capacity have in most cases increased over 5 times, the friction coefficient has been decreased more than 70% , wear life has been im-proved near to 6 times, and the wear resistance has enhanced approximately 10 times and the degree of adhe-sive wear has lightened markedly at low sliding loads. Nevertheless, the wear-resistant properties are reducedgradually with increasing the sliding load. The great improvement of the mechanical properties is mainly owingto the proper structure of the layer and the presence of TiO2, TiN, TiAl3, Al2O3, and AIN phases in it.

关 键 词:铝合金  等离子体基离子注人  纳米硬度  耐磨性,铝合金  等离子体基离子注人  纳米硬度  耐磨性
文章编号:1005-0299(2001)01-0075-06
修稿时间:2000年12月6日
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号