首页 | 本学科首页   官方微博 | 高级检索  
     


EVALUATION AND MODELING OF TWO-STAGE OSMO-CONVECTIVE DRYING OF APPLE SLICES
Authors:H. S. Ramaswamy   N. H. van Nieuwenhuijzen
Affiliation: a Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, Canada
Abstract:Two-stage drying kinetics of cylindrical pieces of apples were evaluated by subjecting test samples first to various osmotic treatments and then to convective air drying to complete the drying process. Osmotic drying was carried out with cut apple cylinders of three different sizes (12, 17 and 20 mm diameter), all with a length to diameter ratio of 1 : 1, in a well agitated large tank containing the osmotic solution at the desired temperature. Solution to fruit volume ratio was kept greater than 60. After the osmotic treatment, apple slices were further dried in a cabinet drier at an average temperature 58°C. A central composite rotatable design (CCRD) with five levels of sucrose concentrations (34-63°Brix) and five temperatures (34-66°C) was used for osmotic treatment. Half-drying time and solids gain time were used as measures of rate of drying and associated diffusion coefficients for moisture loss and solids gain were evaluated. Half-drying time decreased with an increase in temperature or concentration, or a decrease in sample size. Diffusion coefficients were lower for smaller samples, and were higher for migration of moisture as compared to solids. For a given level of moisture removal, air drying times were shorter than osmotic drying times. Composite models were developed to describe the effect of process variables and particle size on the drying behavior of apple slices.
Keywords:Apple  Osmotic drying  Air drying  Moisture diffusivity  Solids diffusivity  Half-drying time  Two phase drying  Modeling
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号