首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机方法的人脸识别研究
引用本文:刘向东,陈兆乾. 基于支持向量机方法的人脸识别研究[J]. 小型微型计算机系统, 2004, 25(12): 2261-2263
作者姓名:刘向东  陈兆乾
作者单位:1. 南京大学,计算机软件新技术国家重点实验室,江苏,南京,210093
2. 南京大学,计算机科学与技术系,江苏,南京,210093
摘    要:采用 SVM方法进行人脸识别研究 ,将人脸识别这一典型的多分类问题构造成适合 SVM处理的二分类问题 ,克服了传统 SVM方法在解决多分类问题上的一些缺陷 .实验以手工与自动两种预处理方式在 FERET和 Bio ID人脸库上完成 ,并与 PCA方法进行了对比 ,结果表明本文的 SVM方法比 PCA方法有更好的概括能力和更高的正确识别率 ,使得今后建立一个基于 SVM方法的人脸自动检测和识别系统成为可能

关 键 词:支持向量机  多分类  人脸识别

Face Recognition Based on Support Vector Machines
LIU Xiang-Dong,CHEN Zhao-Qian. Face Recognition Based on Support Vector Machines[J]. Mini-micro Systems, 2004, 25(12): 2261-2263
Authors:LIU Xiang-Dong  CHEN Zhao-Qian
Abstract:This paper uses SVM method to study face recognition, which is a typical problem of multi-classification. Only one SVM is built to solve this problem, thus overcomes some flaws of several traditional multi-classification methods of SVM. The experiments are done on the FERET and BioID face databases with manual as well as automatic means. The results show that this SVM method has better capability of generalization and higher rate of correct recognition than PCA method. As the method of face detection used in these experiments is also effective, the realization of an automatic face detection and recognition system based on SVM is possible in the future.
Keywords:support vector machines  multi-classification  face recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号