首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and Analytical Solution of Chatter Stability for T-slot Milling
Authors:LI Zhongqun  LIU Qiang
Affiliation:[1]School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412008, China [2]School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
Abstract:T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cutting forces and stability. If cutting conditions are not selected properly the process may result in the poor surface finish of the workpiece and the potential damage to the machine tool. Currently, the predication of chatter stability and determination of optimal cutting conditions based on the modeling of T-slot milling process is an effective way to improve the material removal rate(MRR) of a T-slot milling operation. Based on the geometrical model of the T-slot cutter, the dynamic cutting force model was presented in which the average directional cutting force coefficients were obtained by means of numerical approach, and leads to an analytical determination of stability lobes diagram(SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut was also created to satisfy the special requirement of T-slot milling. Thereafter, a dynamic simulation model of T-slot milling was implemented using Matlab software. In order to verify the effectiveness of the approach, the transfer functions of a typical cutting system in a vertical CNC machining center were measured in both feed and normal directions by an instrumented hammer and accelerators. Dynamic simulations were conducted to obtain the predicated SLD under specified cutting conditions with both the proposed model and CutPro?. Meanwhile, a set of cutting trials were conducted to reveal whether the cutting process under specified cutting conditions is stable or not. Both the simulation comparison and experimental verification demonstrated that the satisfactory coincidence between the simulated, the predicted and the experimental results. The chatter-free T-slot milling with higher MRR can be achieved under the cutting conditions determined according to the SLD simulation.
Keywords:machining dynamics  T-slot milling  chatter vibration  stability lobes diagram
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号