首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机子空间-正交局部保持投影的支持向量机
引用本文:王雪松,高阳,程玉虎. 基于随机子空间-正交局部保持投影的支持向量机[J]. 电子学报, 2011, 39(8): 1746-1750
作者姓名:王雪松  高阳  程玉虎
作者单位:中国矿业大学信息与电气工程学院,江苏徐州 221116
基金项目:国家自然科学基金,教育部新世纪优秀人才支持计划,霍英东教育基金会青年教师基金,江苏省自然科学基金
摘    要:针对高维数、小样本数据分类问题,提出一种基于随机子空间-正交局部保持投影的支持向量机.利用随机子空间方法对原始高维样本的特征空间进行多次随机采样,生成多个具有不同特征子集的基支持向量机(SVM)分类器;利用正交局部保持投影对各基SVM分类器的样本进行特征提取,实现维数约简;然后,利用降维后的样本对各基SVM分类器进行训...

关 键 词:随机子空间  正交局部保持投影  支持向量机  特征提取
收稿时间:2010-06-01

Support Vector Machine Based on Random Subspace and Orthogonal Locality Preserving Projection
WANG Xue-song,GAO Yang,CHENG Yu-hu. Support Vector Machine Based on Random Subspace and Orthogonal Locality Preserving Projection[J]. Acta Electronica Sinica, 2011, 39(8): 1746-1750
Authors:WANG Xue-song  GAO Yang  CHENG Yu-hu
Affiliation:School of Information and Electrical Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China
Abstract:In order to deal with the classification problem for high-dimensional and small-sized data,a kind of support vector machine based on random subspace and orthogonal locality preserving projection was proposed.The random subspace method was used to select a feature subset from the original feature space randomly for several times.Based on the selected feature subset,several base support vector machine (SVM) classifiers were generated.The orthogonal locality preserving projection method was adopted to carry out feature extraction on the samples of each base classifiers,which can,effectively,realize dimensionality reduction.We applied the processed samples to train each base classifiers.The results of the base SVM classifiers were integrated to obtain the final classification result,using a bayesian sum rule.Results on two publicly available face databases show the feasibility and validity of our proposed method.
Keywords:random subspace  orthogonal locality preserving projection  support vector machine  feature extraction
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号