首页 | 本学科首页   官方微博 | 高级检索  
     

噪声环境下遗传算法的收敛性和收敛速度估计
引用本文:李军华,黎明. 噪声环境下遗传算法的收敛性和收敛速度估计[J]. 电子学报, 2011, 39(8): 1898-1902
作者姓名:李军华  黎明
作者单位:南昌航空大学无损检测技术教育部重点实验室,江西南昌,330063
基金项目:国家自然科学基金,江西省自然科学基金
摘    要: 问题求解的环境往往非常复杂,不确定的环境因素、人为因素等都可导致问题处于噪声环境,从而影响实际优化问题的目标函数值的评价.噪声环境下遗传算法的研究在国内外均起步较晚,特别是收敛性和收敛速度的分析是该领域急待解决的问题.本文根据优胜劣汰遗传算法的特性,基于吸收态Markov链的数学模型证明了噪声环境下优胜劣汰遗传算法的收敛性,提出了噪声环境下优胜劣汰遗传算法的首达最优解期望时间的估算方法.

关 键 词:遗传算法  噪声环境  吸收态Markov链  收敛性  收敛速度
收稿时间:2010-11-24

An Analysis on Convergence and Convergence Rate Estimate of Genetic Algorithms in Noisy Environments
LI Jun-hua,LI Ming. An Analysis on Convergence and Convergence Rate Estimate of Genetic Algorithms in Noisy Environments[J]. Acta Electronica Sinica, 2011, 39(8): 1898-1902
Authors:LI Jun-hua  LI Ming
Affiliation:Key Laboratory of Nondestructive Testing (Ministry of Education),Nanchang Hangkong University,Nanchang,Jiangxi 330063,China
Abstract:Random noise perturbs objective functions in many practical problems,and genetic algorithms (GAs) have been widely proposed as an effective optimization tool for dealing with noisy objective functions.However,there are few theoretical studies for the convergence and the convergence speed of genetic algorithms in noisy environments (GA-NE).In this study,Objective functions are assumed to be perturbed by additive random noise.We construct a Markov chain that models elitist-worst genetic algorithms in noisy environments (EWGA-NE).Then the convergence of EWGA-NE is deduced based on the absorbing state Markov chain.Next,the convergence rate of EWGA-NE was studied.The upper and lower bounds for the number of iterations that EWGA-NE selects a globally optimal solution were derived.
Keywords:genetic algorithm  noisy environment  absorbing state Markov chain  convergence  convergence rate
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号