首页 | 本学科首页   官方微博 | 高级检索  
     


Programmed cell death of identified peptidergic neurons involved in ecdysis behavior in the Moth, Manduca sexta
Authors:J Ewer  CM Wang  KA Klukas  KA Mesce  JW Truman  SE Fahrbach
Affiliation:Laboratory of Biophysical Chemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-5626, USA. cheatham@helix.nih.gov
Abstract:Molecular dynamics simulation in explicit solvent and continuum solvent models are applied to investigate the relative stability of A- and B-form helices for two DNA sequences, dA10-dT10 and dG10-dC10 in three structural forms. One structural form is based on an unrestrained molecular dynamics (MD) trajectory starting from a canonical B-DNA structure, the second is based on a MD trajectory starting in a canonical B-DNA structure with the sugars constrained to be C2'-endo and the third simulation started from a canonical A-DNA structure with the sugars constrained to C3'-endo puckers. For the energetic analysis, structures were taken as snapshots from nanosecond length molecular dynamics simulations computed in a consistent fashion in explicit solvent, applying the particle mesh Ewald method and the Cornell et al. force field. The electrostatic contributions to solvation free energies are computed using both a finite-difference Poisson-Boltzmann model and a pairwise Generalized Born model. The non-electrostatic contributions to the solvation free energies are estimated with a solvent accessible surface area dependent term. To estimate the gas phase component of the relative free energy between the various structures, the mean solute internal energies (determined with the Cornell et al. molecular mechanics potential including all pairwise interactions within the solute) and estimates of the solute entropy (using a harmonic approximation) were used. Consistent with experiment, the polyG-polyC (GC) structures are found to be much more A-phillic than the polyA-polyT (AT) structures, the latter being quite A-phobic. The dominant energy components responsible for this difference comes from the internal and van der Waal energies. A perhaps less appreciated difference between the GC and AT rich sequences is suggested by the calculated salt dependence which demonstrates a significantly enhanced ability to drive GC rich sequences towards an A-form structure compared to AT rich sequences. In addition to being A-phobic, the AT structure also has a noticably larger helical repeat than GC and other mixed sequence duplexes, consistent with experiment. Analysis of the average solvent density from the trajectories shows hydration patterns in qualitative agreement with experiment and previous theoretical treatments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号