首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical measurements on ion-implanted LPCVD polycrystalline silicon films
Authors:Ruey-Shing Huang  Chin-Hsiung Cheng  JC Liu  MK Lee  CT Chen
Affiliation:Department of Electrical Engineering, National Tsing Hua University, Hsin-chu, Taiwan;Institute of Applied Physics, National Tsing Hua University, Hsin-chu, Taiwan;IC Development Center, ERSO ITRI, Hsin-chu, Taiwan
Abstract:The electrical conduction properties of ion implanted polycrystalline silicon films have been studied. The polysilicon films were deposited by pyrolysis of silane at 647°C in LPCVD system onto oxide-coated silicon wafers to a thickness of 0.6 μm. Dopants were itroducd by implanting with boron or phosphorus ions, accelerated to 145 keV; doses ranged from 1 × 1012 cm?2 to 1 × 1015 cm?2. Film resistivities spanning 8 orders of magnitude were obtained using this doping range. Current-voltage characteristics of polysilicon resistors were measured at temperatures ranging from 24 to 140°C. The associated barrier heights and activation energies were derived. The grain-boundary trapping states density was estimated to be 5 × 1012 cm?2. We found that both dopant atom segregation and carrier trapping at the grain boundaries play important roles in polysilicon electrical conduction properties. However, within the dose range studies, the dopant atom segragation is most detrimental to the film conductivity for doses < 1 × 1013 cm?2; as the dose is increased, carrier trapping effects become more pronounced for doses up to 5 × 1014 cm?2. For doses ? 5 × 1014 cm?2, conduction due to carriers tunneling through the potential barriers at grain boundaries has to be considered.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号