首页 | 本学科首页   官方微博 | 高级检索  
     

基于协同合作的蚁群优化算法
引用本文:庞思睿,孙文生. 基于协同合作的蚁群优化算法[J]. 信息通信技术, 2009, 3(5): 69-73
作者姓名:庞思睿  孙文生
作者单位:北京邮电大学,北京,100876
摘    要:蚁群优化是一种模拟蚂蚁觅食的群集智能搜索算法,基本蚁群算法收敛性较差,易陷入局部最优解。本文在基本蚁群算法的基础上,提出一种新的蚁群优化算法,通过在信息素局部更新中引入信息素扩散模型,在信息素全局更新中引入随机扰动机制,发挥蚂蚁之间的协同合作能力,提高了算法的收敛速度。以TSP为例的仿真实验表明,该算法具有较强的寻优能力、较好的鲁棒性和有效性。

关 键 词:蚁群算法  群集智能  旅行商问题

Ant Colony Optimization Algorithm Based on Co-operation Strategy
Pang Sirui,Sun Wensheng. Ant Colony Optimization Algorithm Based on Co-operation Strategy[J]. Information and Communications Technologies, 2009, 3(5): 69-73
Authors:Pang Sirui  Sun Wensheng
Affiliation:i( Beij ing University of Posts and Telecommunications, Beijing 100876, China)
Abstract:Ant colony optimization is a kind of searching algorithm which simulates ants foraging. Ant Colony System has the limitation of poor convergence, and is easy to fall in local optimal solution. This paper proposes a new ant colony optimization algorithm, based on a more reasonable diffusion model to update the local pheromone and a disturbance strategy to update the global pheromone. The algorithm shows some advantages in improving the search speed and enhancing collaboration between the ants. As an example of TSP, the simulation results show that the algorithm has better global convergence, robustness and validity.
Keywords:Ant Colony Algorithm  Swarm Intelligence  Traveling Salesman Problem
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号