首页 | 本学科首页   官方微博 | 高级检索  
     

基于历史信息挖掘的变压器健康状态聚类方法
引用本文:李洁珊,王朝硕,章禹,郭创新. 基于历史信息挖掘的变压器健康状态聚类方法[J]. 电力系统保护与控制, 2018, 46(14): 94-99
作者姓名:李洁珊  王朝硕  章禹  郭创新
作者单位:中国南方电网超高压输电公司;浙江大学电气工程学院
基金项目:国家高技术研究发展计划资助(863计划)(2015AA 050204)
摘    要:传统变压器健康状态评估主要集中在评价导则与模型建立上,然而人为因素与低数据利用率或导致评估结果不准确,对此提出了一种基于历史信息挖掘的变压器健康状态聚类方法。首先利用关联分析挖掘变压器历史信息,以置信度量化评价指标。其次采用主分量分析方法获取评价指标关联权重,据此修正指标聚类空间。最后通过Canopy-kmeans两层聚类方法分析变压器集群健康状态,针对不同簇给出相应健康等级以指导状态检修与运行调度。算例分析验证了该方法的可行性与有效性。

关 键 词:变压器;健康状态;大数据;关联分析;主分量分析;聚类分析
收稿时间:2017-07-10
修稿时间:2017-09-26

A clustering method for transformer health state based on historical information mining
LI Jieshan,WANG Chaoshuo,ZHANG Yu and GUO Chuangxin. A clustering method for transformer health state based on historical information mining[J]. Power System Protection and Control, 2018, 46(14): 94-99
Authors:LI Jieshan  WANG Chaoshuo  ZHANG Yu  GUO Chuangxin
Affiliation:EHV Transmission Company, China Southern Power Grid, Guangzhou 510000, China,EHV Transmission Company, China Southern Power Grid, Guangzhou 510000, China,College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China and College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract:Traditional transformer health state assessment is mainly focused on evaluation guideline and mathematical model establishment. However, the assessment results may be inaccurate due to human factors and low data utilization. A clustering method for transformer health state based on historical information mining is proposed to solve these problems. First, association analysis method is applied to extract transformer historical information and quantify evaluation indexes with confidence level. Then association weights of evaluation indexes are obtained from principal component analysis to correct index clustering space. Finally, Canopy-kmeans two-layer clustering method is utilized to analyze transformers health state and assign corresponding health ratings to different clusters to guide the condition-based maintenance and operation dispatching. The feasibility and effectiveness of the proposed method are verified in case study. This work is supported by National High-tech R & D Program of China (863 Program) (No. 2015AA050204).
Keywords:transformer   health state   big data   association analysis   principal component analysis   clustering analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号