摘 要: | 针对复杂背景下的人体检测技术所面临的噪声干扰、背景复杂、相互遮挡等问题,设计一种多尺度多视角人体检测算法。针对传统的梯度方向直方图目标特征提取方法特征维数大、有遮挡时检测率低等缺陷,分别使用扩展多尺度方向特征和经WTA hash编码的多尺度梯度方向直方图特征提取,并使用弱分类器和贪婪算法进行特征选择以获得图像的粗特征和精特征。然后使用线性平移合成多视角样本,使用多层级联的Adaboost算法和支持向量机作为分类器进行人体目标检测,结合复杂背景处理、特征重装等方法提高检测精度。使用INRIA公共测试集的实验结果表明,该算法可精确检测出复杂背景下相互遮挡情况下多视角、多姿态的人体目标,与传统的人体检测算法相比,具有更高的检测效率和检测精度。
|