首页 | 本学科首页   官方微博 | 高级检索  
     

GCAT-U-Net嵌入全局坐标注意力机制的遥感地块分割网络
引用本文:苏耀,于濂,周伟. GCAT-U-Net嵌入全局坐标注意力机制的遥感地块分割网络[J]. 计算机测量与控制, 2022, 30(2): 222-228. DOI: 10.16526/j.cnki.11-4762/tp.2022.02.032
作者姓名:苏耀  于濂  周伟
作者单位:北京师范大学数学科学学院,北京 100875,北京师范大学互联网教育智能技术及应用国家工程实验室,北京 100875
摘    要:遥感影像的地块背景特征复杂,当前地块分割方法不能较好地处理模糊的边缘信息,导致分割精度不理想;文章利用注意力机制处理地块特征,提出了一种基于全局坐标注意力机制的遥感地块分割网络:GCAT-U-Net;该方法在U-Net网络基础上嵌入了全局坐标注意力机制,加强了深度神经网络对于遥感影像数据中重要特征的关注度;在公开的GID数据集上的实验结果表明,文章提出的模型将准确率从0.9041提升到了0.9227,比传统U-Net网络提高了2百分点;结合特征自身重要性和特征位置信息的全局坐标注意力机制有助于更精确的目标定位,其输出相较于嵌入单一注意力机制,地块边界更为清晰,提升效果更为显著。

关 键 词:地块语义分割  注意力机制  模式识别  U-Net网络  卷积神经网络
收稿时间:2021-09-30
修稿时间:2021-10-26

GCAT-U-Net:Remote sensing plot segmentation network with global coordinate attention
SU Yao,YU Lian,ZHOU Wei. GCAT-U-Net:Remote sensing plot segmentation network with global coordinate attention[J]. Computer Measurement & Control, 2022, 30(2): 222-228. DOI: 10.16526/j.cnki.11-4762/tp.2022.02.032
Authors:SU Yao  YU Lian  ZHOU Wei
Affiliation:(School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China;National Engineering Laboratory for Cyberlearning and Intelligent Technology,Beijing Normal University,Beijing 100875,China)
Abstract:The background features of the plots in remote sensing images are complex. The current plot segmentation methods cannot handle the fuzzy edge information well, and the segmentation accuracy is not ideal. This article uses the attention mechanism to process the land parcel features, and proposes a remote sensing land parcel segmentation network based on the global coordinate attention mechanism: GCAT-U-Net. This method embeds the global coordinate attention mechanism on the U-Net network, which strengthens the deep neural network''s attention to important features in remote sensing image data. The experimental results on the public GID data set show that the model proposed in the article increases the accuracy from 0.9041 to 0.9227, which is 2% higher than the traditional U-Net network. The global coordinate attention mechanism that combines the importance of the feature itself and the feature location information is helpful for more accurate target positioning. Compared with the embedded single attention mechanism, the output of the global coordinate attention mechanism is clearer and the improvement effect is more significant.
Keywords:parcel semantic segmentation  attention mechanism  pattern recognition  U-Net network  convolution neural network
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机测量与控制》浏览原始摘要信息
点击此处可从《计算机测量与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号