摘 要: | 极限学习机ELM(Extreme Learning Machine)具有训练过程极为快速的优点,但在实际分类应用中ELM分类器的分类精度和稳定性有时并不能满足要求。针对这一问题,在ELM用于分类时引入一种训练结果信息量评价指标来改进输出权值矩阵的求解方法,并增加隐层输出矩阵竞争机制来提高ELM的稳定性。为了进一步提高ELM的分类正确率,借鉴神经网络集成的理论,提出一种选择性集成ELM分类器。在集成方法中采用改进Bagging法并提出一种基于网络参数向量的相似度评价方法和选择性集成策略。最后通过UCI数据测试表明,同Bagging法和传统的全集成法相比,该方法拥有更为优秀的分类性能。
|