首页 | 本学科首页   官方微博 | 高级检索  
     

同轴管甲烷逆流燃烧器中火焰结构与燃烧稳定性
引用本文:黄景怀,李军伟,陈新建,魏志军,王宁飞. 同轴管甲烷逆流燃烧器中火焰结构与燃烧稳定性[J]. 化工学报, 2016, 67(9): 3590-3597. DOI: 10.11949/j.issn.0438-1157.20151926
作者姓名:黄景怀  李军伟  陈新建  魏志军  王宁飞
作者单位:北京理工大学宇航学院, 北京 100081
基金项目:国家自然科学基金项目(50906004)。
摘    要:用骨架反应机理对同轴管甲烷逆流燃烧器进行分析能够很好地了解火焰结构与燃烧器内的温度分布,并得到各处的火焰拉伸率及相关参数。随着空气流量(QA)的增加,火焰形状由扁平型变化为弯曲型,并逐渐将内管管口包覆,火焰厚度逐渐减小。当量比(ER)较大时,火焰附近温度与物质的分布较为稀疏,而ER较小时,其分布较为紧密。内管壁面上热通量Hf随着的QA增加而逐渐加强;总的传热量H在QA=2540 ml·min-1达到最大。当ER≥3.00时,火焰拉伸率κ开始时缓慢变化,在越过燃烧器内管边缘后快速增加,但最终不大于65 s-1。在ER<1.00时,火焰呈弯曲状,长度较长,κ值变化剧烈,最大可以达到638 s-1,并在火焰末端κ值变为负数,最小值为-262 s-1

关 键 词:甲烷  数值模拟  传热  逆流  燃烧状态  火焰拉伸率  
收稿时间:2015-12-18
修稿时间:2016-06-02

Flame stability and structure of opposed methane/air jet in coaxial tubes
HUANG Jinghuai,LI Junwei,CHEN Xinjian,WEI Zhijun,WANG Ningfei. Flame stability and structure of opposed methane/air jet in coaxial tubes[J]. Journal of Chemical Industry and Engineering(China), 2016, 67(9): 3590-3597. DOI: 10.11949/j.issn.0438-1157.20151926
Authors:HUANG Jinghuai  LI Junwei  CHEN Xinjian  WEI Zhijun  WANG Ningfei
Affiliation:School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract:By using the skeletal reaction mechanism, the combustion in an opposed methane jet in coaxial narrow air stream tubes is studied. The temperature, species distribution, heat flux, flame stretch rate and flame curvature are calculated. When the fuel flow rate (QF)=120 ml·min-1, with increasing QA, the flame changes from flat-disk shape to curved one and covers the inner tube exit, and the flame is forced to move toward the exit of inner pipe. The flame is compressed and the distributions of temperature and species are compact. When equivalence ratio (ER)>1.00, with increasing QA, the peak temperature and the flame length along the flame surface rise and reach the maximum, while when ER≤1.00, the peak temperature and the flame length decrease. The after burning gas preheats the inlet methane through the inner pipe and the total heat flux is influenced by the flame temperature and gas flow. With the increase of QA, the heat flux is much stronger and the preheating increases, reaching the maximum when QA=2450 ml·min-1. When QA>2450 ml·min-1, the preheating goes down. When ER>1.00, the stretch rate of flame κ is small and changes slowly at the beginning, and then it rises sharply along the flame surface but finally it is no more than 65 s-1. When ER≤1.00, along the flame surface, κ increases first and then decreases, and finally become negative with the minimum value of -262 s-1. The increase of QA makes κ change seriously. The maximum of κ is 638 s-1.
Keywords:methane  numerical simulation  heat transfer  opposed flow  combustion characteristics  flame stretch  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号