首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络和遗传算法的甲烷制氢催化剂设计
引用本文:黄凯,陈勇,母志为,何跃. 基于人工神经网络和遗传算法的甲烷制氢催化剂设计[J]. 化工学报, 2016, 67(8): 3481-3490. DOI: 10.11949/j.issn.0438-1157.20160370
作者姓名:黄凯  陈勇  母志为  何跃
作者单位:东南大学化学化工学院, 江苏 南京 211189
基金项目:国家重点基础研究发展计划项目(2012CB21500402);国家自然科学基金项目(21576049);中央高校基本科研业务费专项资金项目(2242016k40082);东南大学基于教师科研的本科生科研训练计划项目(T16192022)。
摘    要:通过筛选辅助组分和制备方法,制备了一种用于甲烷直接制氢的Fe3O4复合氧化物催化剂。应用人工神经网络建立了该催化剂的配方模型,对人工神经网络模型学习算法、激活函数以及网络结构进行了考察,确定了该催化剂辅助设计的步骤及模型的网络结构,将Levenberg-Marquardt方法用于网络的训练,改进了网络的收敛特性,最终获得了泛化能力较强的人工神经网络配方模型。以建立的模型为目标函数,采用改进的混合遗传算法作为优化方法,经过6轮优化,获得了一系列较优的甲烷直接制氢的Fe3O4复合氧化物催化剂配方。选用其中一种优化获得的配方进行甲烷制氢反应,催化剂寿命和氢气生成速率分别达到4.46 h和1.16 mmol·min-1·(g Fe)-1,优于以往报道的催化剂。

关 键 词:甲烷  制氢  催化剂  人工神经网络  遗传算法  
收稿时间:2016-03-29
修稿时间:2016-05-23

Catalyst design for production of hydrogen from methane based on artificial neural network and genetic algorithm
HUANG Kai,CHEN Yong,MU Zhiwei,HE Yue. Catalyst design for production of hydrogen from methane based on artificial neural network and genetic algorithm[J]. Journal of Chemical Industry and Engineering(China), 2016, 67(8): 3481-3490. DOI: 10.11949/j.issn.0438-1157.20160370
Authors:HUANG Kai  CHEN Yong  MU Zhiwei  HE Yue
Affiliation:School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China
Abstract:By screening the auxiliary components and preparation methods, a Fe3O4 composite oxide catalyst was prepared for production of hydrogen from methane. Based on the properties of neural network, an improved back-propagation network model was developed to simulate the relationship between components of the catalyst and catalytic performances of the catalyst life and the formation rate of hydrogen. The model network structure and the computer-aided design procedures were established after investigation of the structural organization, the training method, the activation function, and the generalization ability of artificial neural network. Upon used the Levenberg-Marquardt training method, the network convergence was improved significantly and a formulation model of artificial neural network was achieved with strong generalization capability. To further enhance efficiency of catalyst design, a hybrid genetic algorithm was employed for global optimization of design. After six cycles of design optimization, a series formulation of Fe3O4 composite oxide catalysts for production of hydrogen from methane was developed. When one of the optimized catalysts was applied in hydrogen production, the catalyst life and formation rate of hydrogen were 4.46 h and 1.16 mmol·min-1·(g Fe)-1, respectively, which were better than those of previously reported catalysts.
Keywords:methane  hydrogen production  catalyst  artificial neural network  genetic algorithm  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号