首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的基于反k近邻的流数据离群点检测算法
引用本文:呼 妮,王 勇. 一种改进的基于反k近邻的流数据离群点检测算法[J]. 计算机与现代化, 2016, 0(8): 32-118. DOI: 10.3969/j.issn.1006-2475.2016.08.007
作者姓名:呼 妮  王 勇
基金项目:西北工业大学基础研究基金资助项目(JC201273)
摘    要:现有反k邻域的流数据离群点挖掘算法存在一些不足之处,即需要遍历每个数据对象,计算复杂度较高,稳定性较差。为了解决这些问题,本文提出一种改进的基于反k近邻的离群点检测算法OL-ORND。该算法采用细胞邻域思想,加入伪反k邻域点概念(反k邻域为空集的点对象),增加了算法的严密性,从而大大提高了算法的效率和准确率。实验表明,算法具有较好的性能。

关 键 词:流数据  反k近邻  细胞邻域  离群点  
收稿时间:2016-08-11

An Improved Stream Data Outlier Mining Algorithm Based on Reverse k Nearest Neighbors
HU Ni,WANG Yong. An Improved Stream Data Outlier Mining Algorithm Based on Reverse k Nearest Neighbors[J]. Computer and Modernization, 2016, 0(8): 32-118. DOI: 10.3969/j.issn.1006-2475.2016.08.007
Authors:HU Ni  WANG Yong
Abstract:The existing stream data outliers mining algorithms based on the reverse k neighbors need to traverse each data object, so the computational complexity is higher and the stability is lower. In order to solve these problems, this paper puts forward an improved outliers detection algorithm based on reverse k nearest neighbors named OL-ORND. Using the idea of cell neighbors, adding the false k reverse neighbors object concept that does not belong to the reverse k neighborhood. So that it can improve the efficiency and accuracy of the algorithm. Through the experiment, we can see that the algorithm has good performance.
Keywords:stream data  reverse k nearest neighbors,cell neighbors,outliers,
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号