首页 | 本学科首页   官方微博 | 高级检索  
     


High temperature creep of alpha iron in terms of effective stress and dislocation dynamics
Authors:K H Georgy  J ?adek
Affiliation:(1) Solid State Physics Department, National Research Center, Dokki, Giza, Egypt;(2) Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Brno, Czechoslovakia
Abstract:The dynamics of dislocations in both steady state and transient creep in alpha iron of about 99.5 pct purity was investigated in the temperature interval 773 to 923 K, and the applied stress range 24.5 to 220.5 MN m−2. The applied stress sensitivity parameter of the steady state creep rate m∲ = (∂ In ε/∂ In σ) T increased linearly with increasing applied stress σ from about 5 at σ = 24.5 MN m−2 to about 12 at σ = 196 MN m−2. The apparent activation energy of steady state creep rate 
$$Q = \left {{{\partial ln\dot \varepsilon _s } \mathord{\left/ {\vphantom {{\partial ln\dot \varepsilon _s } {\partial \left( {{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {KT}}} \right. \kern-\nulldelimiterspace} {KT}}} \right)}}} \right. \kern-\nulldelimiterspace} {\partial \left( {{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {KT}}} \right. \kern-\nulldelimiterspace} {KT}}} \right)}}} \right]_\sigma  $$
was found to decrease linearly with stress from 89 K cal mol−1 at σ = 98 MN m−2 to 81 K cal mol−1 at a = 147 MN m−2. Measurements of the mean effective stress σ* by the strain transient dip test technique led to a nonlinear relation between σ* and σ, indicating a dependence of the ratio σ*/σ on the applied stress. The effective stress sensitivity parameter 
$$m/* = \left( {{{\partial ln\dot \varepsilon _s } \mathord{\left/ {\vphantom {{\partial ln\dot \varepsilon _s } \partial }} \right. \kern-\nulldelimiterspace} \partial }ln\sigma *} \right)_T $$
was lower than m′.However, the apparent activation energy 
$$Q* = \left {{{\partial ln\dot \varepsilon _s } \mathord{\left/ {\vphantom {{\partial ln\dot \varepsilon _s } {\partial \left( {{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {KT}}} \right. \kern-\nulldelimiterspace} {KT}}} \right)}}} \right. \kern-\nulldelimiterspace} {\partial \left( {{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {KT}}} \right. \kern-\nulldelimiterspace} {KT}}} \right)}}} \right]_{\sigma ^* } $$
was equal toQ. Using the stress sensitivity technique, the relation between transient creep rate and effective stress at various constant internal stresses and temperatures was obtained. The effective stress sensitivity of transient creep rate 
$$Q = \left {{{\partial ln\dot \varepsilon _s } \mathord{\left/ {\vphantom {{\partial ln\dot \varepsilon _s } {\partial \left( {{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {KT}}} \right. \kern-\nulldelimiterspace} {KT}}} \right)}}} \right. \kern-\nulldelimiterspace} {\partial \left( {{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {KT}}} \right. \kern-\nulldelimiterspace} {KT}}} \right)}}} \right]_\sigma  $$
was found to be lessthan that of steady creep rate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号