首页 | 本学科首页   官方微博 | 高级检索  
     


Finite-Memory Systems
Authors:Maria Alessandra Fasoli
Affiliation:(1) Institut für Mathematik, Universität Innsbruck, Technikerstraße 25, A - 6020 Innsbruck, Austria
Abstract:Let K be a field, k and n positive integers and let 
$$A_1 , \ldots ,A_k {\text{ be }}n \times n - $$
matrices with coefficients in K. For any function

$$g\user2{: }\Gamma : = \left\{ {t: = (t_1 , \ldots ,t_k )} \right. \in \mathbb{N}^k \left| {\left. {t_1 t_2  \ldots t_k  = 0} \right\}} \right. \to K^n $$
there exists a unique solution 
$$x:\mathbb{N}^k  \to K^n $$
of the system of difference equations

$$\left(  \right)x(t_1  + 1, \ldots ,t_k  + 1) = $$

$$ = \sum\nolimits_{j = 1}^k {A_j x} (t_1  + 1, \ldots ,t_{j - 1}  + 1,t_j ,t_{j + 1}  + 1, \ldots ,t_k  + 1)$$
defined by the matrix-k-tuple 
$$(A_1 , \ldots ,A_k ) \in M(n;K)^k $$
such that 
$$x_{\left| \Gamma  \right.}  = g$$
. The system 
$$\left(  \right)$$
is called ldquofinite-memory systemrdquo iff for every function g with finite support the values 
$$x(t_1 , \ldots ,t_k )$$
are 0 for sufficiently big 
$$t_1  +  \cdots  + t_k $$
. In the case 
$$k = 2,K = \mathbb{R}$$
, these systems and the corresponding matrix-k-tuples have been studied in bis, fm, fmv, fv1, fv, fz. In this paper I generalize these results to an arbitrary positive integer k and to an arbitrary field K.
Keywords:system of difference equations  finite-memory system  nilpotent space of matrices  separable k-tuples of matrices
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号