首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell
Authors:Susanta K Das  Antonio Reis  KJ Berry
Affiliation:Department of Mechanical Engineering, Center for Fuel Cell Systems and Powertrain Integrations, Kettering University, 1700W. Third Avenue, Flint, MI 48504, USA
Abstract:We experimentally studied a high temperature proton exchange membrane (PEM) fuel cell to investigate the effects of CO poisoning at different temperatures. The effects of temperature, for various percentages of CO mixed with anode hydrogen stream, on the current-voltage characteristics of the fuel cell are investigated. The results show that at low temperature, the fuel cell performance degraded significantly with higher CO percentage (i.e., 5% CO) in the anode hydrogen stream compared to the high temperature. A detailed electrochemical analysis regarding CO coverage on electrode surface is presented which indicates that electrochemical oxidation is favorable at high temperature. A cell diagnostic test shows that both 2% CO and 5% CO can be tolerated equally at low current density (<0.3 A cm−2) with high cell voltage (>0.5 V) at 180 °C without any cell performance loss. At high temperature, both 2% CO and 5% CO can be tolerated at higher current density (>0.5 A cm−2) with moderate cell voltage (0.2-0.5 V) when the cell voltage loss within 0.03-0.05 V would be acceptable. The surface coverage of platinum catalyst by CO at low temperature is very high compared to high temperature. Results suggest that the PEM fuel cell operating at 180 °C or above, the reformate gas with higher CO percentage (i.e., 2-5%) can be fed to the cell directly from the fuel processor.
Keywords:High temperature PEM  Fuel cell  CO poisoning  Experimental  Performance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号