首页 | 本学科首页   官方微博 | 高级检索  
     


Global failure criteria for positive/electrolyte/negative structure of planar solid oxide fuel cell
Authors:W.N. Liu  X. Sun  J.M. Qu
Affiliation:a Pacific Northwest National Laboratory, P.O. Box 999, 906 Battelle Boulevard, Richland, WA 99354, United States
b Georgia Institute of Technology, 801 Ferst Dr, Atlanta, GA 30332, United States
Abstract:Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.
Keywords:SOFC PEN   Ceramics   Fracture mechanism   Global fracture criteria   Energy release rate   Critical curvature
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号