首页 | 本学科首页   官方微博 | 高级检索  
     

用于Micro-EDM放电状态分类的多传感器集成与信息融合系统
引用本文:裴景玉,韩静,高长水,刘正埙. 用于Micro-EDM放电状态分类的多传感器集成与信息融合系统[J]. 数据采集与处理, 2000, 15(3): 377-381
作者姓名:裴景玉  韩静  高长水  刘正埙
作者单位:南京航空航天大学机电工程学院,南京,210016
基金项目:江苏省航空科学基金,江苏省应用技术基金!(编号 :BJ970 5 7)资助项目
摘    要:在Micro-EDM(微细电火花加工)中,由于加工信号的频率高、加工波形的畸变,使得常规的用于放电状态检测的方法,如电压波形采样、放电延时等,已不再适用。利用多传感器的信息融合进行目标识别,可以避免单一传感器的局限性,减少各传感器不确定性的影响。文中描述了一人用于目标识别与分类的基于模型的多传感器系统。该系统选用以决策层为主的方法,以模糊神经网络作为其信息融合的工具。体现了多传感器信息融合优越性。

关 键 词:电火花加工 放电状态 多传感器 信息融合系统

Multi-Sensor Integration and Data Fusion System A pplied to Discharge Condition Recognition and Classification in Micro-EDM
Pei Jingyu,Han Jing,Gao Changshui,Liu Zhengxun. Multi-Sensor Integration and Data Fusion System A pplied to Discharge Condition Recognition and Classification in Micro-EDM[J]. Journal of Data Acquisition & Processing, 2000, 15(3): 377-381
Authors:Pei Jingyu  Han Jing  Gao Changshui  Liu Zhengxun
Abstract:Discharge condition detection methods, such as discharg e time delay, voltage wave sampling, used in the conventional EDM (electric disch arge manufacturing) are not suitable for the Micro-EDM due to the high frequenc y and the distortion of the voltage wave shape. In order to avoid the limitation of a single sensor and to reduce the negative effect caused by the uncertainty of individual sensors, the data fusion of a multi-sensor system is used to acqu ire the relevant knowledge of the target. In this paper, a multi-sensor system is described, which is based on the model tool and applied to target recognition a nd classification. In the data fusion process, a fuzzy neural network (FNN) is selected and used for the data fusion at the report level. Experimental results show that the method works correctly, the cost decreases and the relia b ility of the recognition increases. The superiority of this method has been show n.
Keywords:electric discharge machining  recognition  fusion  fuzzy neural network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号