首页 | 本学科首页   官方微博 | 高级检索  
     

基于新型RBF神经网络的四缸发动机活塞-轴系仿真研究
引用本文:孟凡明,张优云. 基于新型RBF神经网络的四缸发动机活塞-轴系仿真研究[J]. 内燃机工程, 2005, 26(5): 62-65
作者姓名:孟凡明  张优云
作者单位:清华大学,摩擦学国家重点实验室,北京,100084;西安交通大学,润滑理论及轴承研究所
基金项目:国家自然科学基金资助(50375115)
摘    要:将一种新型的RBF神经网络和可视化等技术引入四缸发动机活塞-轴系的动力学建模申,建立了四缸发动机的活塞-轴系的仿真模型。提出的神经网络考虑了发动机运行具有周期性和不同缸存在点火相位差等特点,能重构发动机各缸燃烧气体作用于活塞的压力和其它方法难以再现的由二维雷诺润滑方程计算得到的油膜力,其有效性也被证明。再对神经网络进行训练、模块化并耦合到四缸发动机活塞-轴系动力学模型中,开发了MATLAB/SIMULINK环境下的四缸发动机活塞-轴系动力学仿真模块。这种方法也适合于其它类型发动机建模。

关 键 词:内燃机  活塞-轴系  仿真  耦合  RBF神经网络  神经网络/仿真
文章编号:1000-0925(2005)05-062-04
收稿时间:2004-05-09
修稿时间:2004-05-09

Simulation of Piston-Crankshaft System of Engine Based on Improved Radial Base Function Neural Network
MENG Fan-ming,ZHANG You-yun. Simulation of Piston-Crankshaft System of Engine Based on Improved Radial Base Function Neural Network[J]. Chinese Internal Combustion Engine Engineering, 2005, 26(5): 62-65
Authors:MENG Fan-ming  ZHANG You-yun
Abstract:By the use of introducing a new type of Radial Base Function neural networks(RBFNN)and visualization technology into the simulation of the piston-crankshaft coupling dynamic system of a four-cylinder engine,the simulation models of this type of engine were developed.Under the consideration of operation performances of the above four-cylinder engine,the RBFNN proposed could reconstructed the oil film forces calculated by two-dimensional Reynold lubrication equation and pressure applied on the piston by combustion gas in a cylinder,and its validity was demonstrated.Based on coupling the successfully trained and modularized RBFNN into the dynamic equations for the above piston-crankshaft system,the simulation models of this system were developed by SIMULINK in MATLAB.The proposed method can also apply to the modelling of other type engines.
Keywords:I. C. Engine   Piston-Crankshaft System    Simulation   Coupling   RadialBase Function Neural Network   MATLAB/SIMULINK
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号