首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传神经网络的机器人腕力传感器动态建模与补偿方法
引用本文:俞阿龙,黄惟一,秦刚. 基于遗传神经网络的机器人腕力传感器动态建模与补偿方法[J]. 机械工程学报, 2006, 42(12): 239-244
作者姓名:俞阿龙  黄惟一  秦刚
作者单位:淮阴师范学院物理系,淮安,223001;东南大学仪器科学与工程系,南京,210096
基金项目:江苏省高校自然科学基金
摘    要:介绍用于MotomamV3X机器人上的新型多维腕力传感器,比较遗传算法与人工神经网络的特点,将遗传算法的交叉和变异操作进行改进,提出一种融合改进遗传算法(Genetic algorithm, GA)的函数连接型人工神经网络(Functional link artificial neural network, FLANN),并将其用于所介绍的新型机器人腕力传感器动态建模与动态性能补偿中。介绍动态建模与动态补偿原理及改进遗传神经网络算法,给出该传感器的动态模型和动态补偿模型。该方法利用腕力传感器的动态标定数据,采用改进遗传神经网络搜索和优化模型参数,保留了遗传算法的全局搜索能力和FLANN结构简单,鲁棒性好,且具备自学习能力的特点,克服了FLANN容易陷入局部极小的缺陷,具有快的网络训练速度及高的动态建模精度。理论分析和试验结果都证实了所提出的动态建模与动态补偿方法的有效性。

关 键 词:机器人腕力传感器  动态建模  动态补偿  函数连接型人工神经网络  遗传算法
修稿时间:2005-12-24

DYNAMIC MODELING AND COMPENSATION METHOD BASED ON GENETIC NEURAL NETWORK FOR NEW TYPE ROBOT WRIST FORCE SENSOR
YU Along,HUANG Weiyi,QIN Gang. DYNAMIC MODELING AND COMPENSATION METHOD BASED ON GENETIC NEURAL NETWORK FOR NEW TYPE ROBOT WRIST FORCE SENSOR[J]. Chinese Journal of Mechanical Engineering, 2006, 42(12): 239-244
Authors:YU Along  HUANG Weiyi  QIN Gang
Affiliation:Department of Physics, Huaiyin Teachers College Department of Instrument Science and Engineering, Southeast University
Abstract:A new kind of multi-dimensional wrist force sensor applied to MotomamV3X robot is introduced,The characteris- tics of genetic algorithm(GA)and artificial neural networks (ANN)are compared.The operator of crossover and mutation for GA is improved.A kind of new dynamic modeling and compensation method is presented based on improved genetic algorithm for the proposed sensor.The dynamic modeling and compensation principle and the algorithms of improved genetic neural networks(IGNN)are introduced and the dynamic model and compensation model are given for the proposed robot wrist force sensor.In this method,the dynamic model and compensa- tion model of wrist force sensor can be set up according to measurement data of the dynamic calibration,where the dy- namic model and compensation model parameters are trained by improved genetic neural network.So the method remains the global searching ability of GA and the simple structure and good robustness and self-learning ability of FLANN and can overcome FLANN's shortcoming of easy convergence to the local minimum points and has fast network training speed and high modeling precision.Their effectiveness is verified by ex- periments and theoretical analysis.
Keywords:Robot wrist force sensor  Dynamic modeling  Dynamic compensation  Function link artificial neural networks  Genetic algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《机械工程学报》浏览原始摘要信息
点击此处可从《机械工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号