首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的非线性系统模型预测控制
引用本文:徐保国,胡立萍. 基于支持向量机的非线性系统模型预测控制[J]. 计算机测量与控制, 2005, 13(8): 799-802
作者姓名:徐保国  胡立萍
作者单位:江南大学,通信与控制工程学院,江苏,无锡,214036;江南大学,通信与控制工程学院,江苏,无锡,214036
基金项目:《轻工发酵先进控制与优化软件技术平台》课题项目(2001BA204B01-03)。
摘    要:支持向量机是基于统计学习理论的新一代机器学习技术。由于使用结构风险最小化原则代替经验风险最小化原则.使它较好的解决了小样本情况下的学习问题。又由于其采用了核函数思想.使它把非线性问题转化为线性问题来解决,降低了算法的难度.具有全局最优、良好泛化能力等优越性能.得到广泛的研究。基于上述特性提出了一种基于支持向量机的非线性模型预测控制结构.其中使用遗传算法来求解预测控制律.随后用计算机仿真证明了此控制算法的正确性和有效性。

关 键 词:支持向量机  模型预测控制  遗传算法
文章编号:1671-4598(2005)08-0799-03
修稿时间:2004-10-20

Support Vector Machine Based Nonlinear Model Predictive Control
Xu Baoguo,Hu Liping. Support Vector Machine Based Nonlinear Model Predictive Control[J]. Computer Measurement & Control, 2005, 13(8): 799-802
Authors:Xu Baoguo  Hu Liping
Abstract:Support Vector Machines(SVM)are a new-generation machine learning technique based on the statistical learning theory. They can solve small-sample learning problems better by using Structural Risk Minimization in place of Experiential Risk Minimization. Moreover, SVM can change a nonlinear learning problem into a linear learning problem in order to reduce the algorithm complexity by using the kernel function idea. They have recently attracted growing research interest due to their obvious advantage such as good generalization ability, unique and globally optimal solutions. Based on the characteristics of SVM a nonlinear predictive control framework is presented, in which nonlinear plants are modeled on a support vector machine. The predictive control law is derived by genetic algorithm. At last a simulation example is given to demonstrate the proposed approach.
Keywords:support vector machine  model predictive control  genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号