首页 | 本学科首页   官方微博 | 高级检索  
     

带有偏差单元的IRN模型在深层搅拌桩承载力计算中的应用
引用本文:郝小员,刘汉龙,高玉峰. 带有偏差单元的IRN模型在深层搅拌桩承载力计算中的应用[J]. 建筑技术开发, 2002, 0(1)
作者姓名:郝小员  刘汉龙  高玉峰
作者单位:河海大学岩土工程研究所 南京210098(郝小员,刘汉龙),河海大学岩土工程研究所 南京210098(高玉峰)
摘    要:对影响深层搅拌桩复合地基承载力的因素进行了分析 ,并对现行的设计方法存在的问题进行探讨 ,提出利用人工神经网络带有偏差单元的IRN(InternallyRecurrentNet)模型对复合地基承载力进行计算的新思路。通过实例验证 ,该模型可达到较好的效果 ,为今后深层搅拌桩承载力设计计算提供了可借鉴的方法。

关 键 词:人工神经网络  IRN模型  深层搅拌桩  复合地基承载力

APPLICATION OF IRN ARTIFICIAL NEURAL NETWORK WITH ERRORUNIT IN DESIGN OF THE DEEP MIXING PILE
HAO Xiao-yuan LIU Han-long GAO Yu-feng. APPLICATION OF IRN ARTIFICIAL NEURAL NETWORK WITH ERRORUNIT IN DESIGN OF THE DEEP MIXING PILE[J]. Building Technique Development, 2002, 0(1)
Authors:HAO Xiao-yuan LIU Han-long GAO Yu-feng
Affiliation:HAO Xiao-yuan LIU Han-long GAO Yu-feng
Abstract:The infecting factors of the bearing capacity of compound foundation to deep mixing pile are analyzed,and the existing questions of the current design method to mixing pile are discussed in the paper.A new athematics model of IRN artificial neural network with error unit is set up and applied to the calculation of the bearing capacity of compound foundation to deep mixing pile.It can be verified that the model is ideal with the actual examples.The new method can be referenced to the reasonable design of deep mixing pile in the future.
Keywords:Artificial neural network  IRN model  Deep mixing pile  Bearing capacity of compound foundation  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号