首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular dynamics study of chiral recognition for the whelk-O1 chiral stationary phase
Authors:Zhao C F  Cann N M
Affiliation:Department of Chemistry, Queen's University, Kingston, Ontario, Canada.
Abstract:In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring-ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring-ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号