首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics and microstructural modeling of isothermal austenite-to-ferrite transformation in Fe-C-Mn-Si steels
Affiliation:1. Key Laboratory of Advanced Materials, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;2. Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands;3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;1. Université de Rouen, Groupe de Physique des Matériaux, UMR 6634 CNRS, UFR Sciences et Techniques, Avenue de l''Université, BP12, 76801 Saint Etienne du Rouvray, France;2. ArcelorMittal research SA, voie romaine, 57 280 Maizières Les Metz, France;3. Université de Lorraine, Laboratoire d''étude des microstructures et de mécanique des matériaux, UMR CNRS 7239, Ile du Saulcy, 57045 Metz cedex 01, France;4. Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS 9048, 87 Avenue du Docteur Schweitzer, 33608 PESSAC cedex, France
Abstract:During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed, in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both soft-impingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17C-0.91Mn-1.03Si (wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.
Keywords:Isothermal austenite-ferrite transformation  Kinetics  Thermodynamics  Microstructural modeling  Low-alloy steel
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号